dwelling act 4 (live motion cap w/ kinect azure)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

277 lines
9.9 KiB

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using Unity.Barracuda;
public class BarracudaRunner : MonoBehaviour
{
public NNModel neuralNetworkModel;
public WorkerFactory.Type workerType = WorkerFactory.Type.Auto;
public float waitTime = 10;
public bool verbose = true;
/// <summary>
/// Number of joint points.
/// </summary>
private const int jointNum = 24;
private int jointNumSquared { get { return jointNum * 2; } }
private int jointNumCube { get { return jointNum * 3; } }
/// <summary>
/// Input image size.
/// </summary>
public int inputImageSize;
private float inputImageHalfSize { get { return (float)inputImageSize / 2f; } }
private float imageScale { get { return inputImageSize / (float)heatMapCol; } }
/// <summary>
/// Column number of heatmap.
/// </summary>
public int heatMapCol;
private int heatMapColSquared { get { return heatMapCol * heatMapCol; } }
private int heatMapColCube { get { return heatMapCol * heatMapCol * heatMapCol; } }
/// <summary>
/// Kalman filter parameter Q.
/// </summary>
public float kalmanParamQ;
/// <summary>
/// Kalman filter parameter R.
/// </summary>
public float kalmanParamR;
public bool useLowPassFilter = true;
public float lowPassParam = 0.1f;
public Texture2D baseTexture;
public VideoCapture videoCapture;
public Avatar avatar;
private float[] heatMap3D;
private float[] offset3D;
private int heatMapColxJointNum { get { return heatMapCol * jointNum; } }
private int cubeOffsetLinear { get { return heatMapCol * jointNumCube; } }
private int cubeOffsetSquared { get { return heatMapColSquared * jointNumCube; } }
private const string inputName1 = "input.1";
private const string inputName2 = "input.4";
private const string inputName3 = "input.7";
private Tensor input = new Tensor();
private Dictionary<string, Tensor> inputs = new Dictionary<string, Tensor>() { { inputName1, null }, { inputName2, null }, { inputName3, null }, };
private Tensor[] outputs = new Tensor[4];
private Model model;
private IWorker worker;
private bool loaded = false;
private void Start()
{
heatMap3D = new float[jointNum * heatMapColCube];
offset3D = new float[jointNum * heatMapColCube * 3];
// Disabel sleep.
Screen.sleepTimeout = SleepTimeout.NeverSleep;
// Initialize the model.
model = ModelLoader.Load(neuralNetworkModel, verbose);
worker = WorkerFactory.CreateWorker(workerType, model, verbose);
StartCoroutine(Load());
}
private void Update()
{
if( loaded )
{
UpdateAvatar();
}
}
private IEnumerator Load()
{
inputs[inputName1] = new Tensor(baseTexture);
inputs[inputName2] = new Tensor(baseTexture);
inputs[inputName3] = new Tensor(baseTexture);
// Create input and execute model.
yield return worker.StartManualSchedule(inputs);
// Get outputs.
for( int i = 2; i < model.outputs.Count; i++ )
{
outputs[i] = worker.PeekOutput(model.outputs[i]);
}
// Get data from outputs.
offset3D = outputs[2].data.Download(outputs[2].shape);
heatMap3D = outputs[3].data.Download(outputs[3].shape);
// Release outputs.
for( int i = 2; i < outputs.Length; i++ )
{
outputs[i].Dispose();
}
PredictPose();
yield return new WaitForSeconds(waitTime);
videoCapture.Initialize(inputImageSize, inputImageSize);
loaded = true;
}
private void UpdateAvatar()
{
input = new Tensor(videoCapture.renderTexture);
if( inputs[inputName1] == null )
{
inputs[inputName1] = input;
inputs[inputName2] = new Tensor(videoCapture.renderTexture);
inputs[inputName3] = new Tensor(videoCapture.renderTexture);
}
else
{
inputs[inputName3].Dispose();
inputs[inputName2].Dispose();
inputs[inputName1].Dispose();
inputs[inputName3] = input;
inputs[inputName2] = input;
inputs[inputName1] = input;
}
StartCoroutine(ExecuteModel());
}
private IEnumerator ExecuteModel()
{
// Create input and execute model.
yield return worker.StartManualSchedule(inputs);
// Get outputs.
for( int i = 2; i < model.outputs.Count; i++ )
{
outputs[i] = worker.PeekOutput(model.outputs[i]);
}
// Get data from outputs.
offset3D = outputs[2].ToReadOnlyArray();
heatMap3D = outputs[3].ToReadOnlyArray();
// Release outputs.
for ( int i = 2; i < outputs.Length; i++ )
{
outputs[i].Dispose();
}
PredictPose();
}
private void PredictPose()
{
for( int j = 0; j < jointNum; j++ )
{
int maxXIndex = 0;
int maxYIndex = 0;
int maxZIndex = 0;
avatar.jointPoints[j].score3D = 0.0f;
int jj = j * heatMapCol;
for( int z = 0; z < heatMapCol; z++ )
{
int zz = jj + z;
for( int y = 0; y < heatMapCol; y++ )
{
int yy = y * heatMapColSquared * jointNum + zz;
for( int x = 0; x < heatMapCol; x++ )
{
float v = heatMap3D[yy + x * heatMapColxJointNum];
if( v > avatar.jointPoints[j].score3D )
{
avatar.jointPoints[j].score3D = v;
maxXIndex = x;
maxYIndex = y;
maxZIndex = z;
}
}
}
}
avatar.jointPoints[j].now3D.x = (offset3D[maxYIndex * cubeOffsetSquared + maxXIndex * cubeOffsetLinear + j * heatMapCol + maxZIndex] + 0.5f + (float)maxXIndex) * imageScale - inputImageHalfSize;
avatar.jointPoints[j].now3D.y = inputImageHalfSize - (offset3D[maxYIndex * cubeOffsetSquared + maxXIndex * cubeOffsetLinear + (j + jointNum) * heatMapCol + maxZIndex] + 0.5f + (float)maxYIndex) * imageScale;
avatar.jointPoints[j].now3D.z = (offset3D[maxYIndex * cubeOffsetSquared + maxXIndex * cubeOffsetLinear + (j + jointNumSquared) * heatMapCol + maxZIndex] + 0.5f + (float)(maxZIndex - 14)) * imageScale;
}
// Calculate hip location.
Vector3 lc = (avatar.jointPoints[PositionIndex.RightThighBend.Int()].now3D + avatar.jointPoints[PositionIndex.LeftThighBend.Int()].now3D) / 2f;
avatar.jointPoints[PositionIndex.Hip.Int()].now3D = (avatar.jointPoints[PositionIndex.AbdomenUpper.Int()].now3D + lc) / 2f;
// Calculate neck location.
avatar.jointPoints[PositionIndex.Neck.Int()].now3D = (avatar.jointPoints[PositionIndex.RightShoulderBend.Int()].now3D + avatar.jointPoints[PositionIndex.LeftShoulderBend.Int()].now3D) / 2f;
// Calculate head location.
Vector3 cEar = (avatar.jointPoints[PositionIndex.RightEar.Int()].now3D + avatar.jointPoints[PositionIndex.LeftEar.Int()].now3D) / 2f;
Vector3 hv = cEar - avatar.jointPoints[PositionIndex.Neck.Int()].now3D;
Vector3 nhv = Vector3.Normalize(hv);
Vector3 nv = avatar.jointPoints[PositionIndex.Nose.Int()].now3D - avatar.jointPoints[PositionIndex.Neck.Int()].now3D;
avatar.jointPoints[PositionIndex.Head.Int()].now3D = avatar.jointPoints[PositionIndex.Neck.Int()].now3D + nhv * Vector3.Dot(nhv, nv);
// Calculate spine location.
avatar.jointPoints[PositionIndex.Spine.Int()].now3D = avatar.jointPoints[PositionIndex.AbdomenUpper.Int()].now3D;
// Kalman filter.
foreach( JointPoint jp in avatar.jointPoints )
{
KalmanFilter(jp);
}
// Low pass filter.
if( useLowPassFilter )
{
foreach( JointPoint jp in avatar.jointPoints )
{
jp.prevPos3D[0] = jp.pos3D;
for( int i = 1; i < jp.prevPos3D.Length; i++ )
{
jp.prevPos3D[i] = jp.prevPos3D[i] * lowPassParam + jp.prevPos3D[i - 1] * (1f - lowPassParam);
}
jp.pos3D = jp.prevPos3D[jp.prevPos3D.Length - 1];
}
}
}
private void KalmanFilter( JointPoint measurement )
{
MeasurementUpdate(measurement);
measurement.pos3D.x = measurement.x.x + (measurement.now3D.x - measurement.x.x) * measurement.k.x;
measurement.pos3D.y = measurement.x.y + (measurement.now3D.y - measurement.x.y) * measurement.k.y;
measurement.pos3D.z = measurement.x.z + (measurement.now3D.z - measurement.x.z) * measurement.k.z;
measurement.x = measurement.pos3D;
}
private void MeasurementUpdate( JointPoint measurement )
{
measurement.k.x = (measurement.p.x + kalmanParamQ) / (measurement.p.x + kalmanParamQ + kalmanParamR);
measurement.k.y = (measurement.p.y + kalmanParamQ) / (measurement.p.y + kalmanParamQ + kalmanParamR);
measurement.k.z = (measurement.p.z + kalmanParamQ) / (measurement.p.z + kalmanParamQ + kalmanParamR);
measurement.p.x = kalmanParamR * (measurement.p.x + kalmanParamQ) / (kalmanParamR + measurement.p.x + kalmanParamQ);
measurement.p.y = kalmanParamR * (measurement.p.y + kalmanParamQ) / (kalmanParamR + measurement.p.y + kalmanParamQ);
measurement.p.z = kalmanParamR * (measurement.p.z + kalmanParamQ) / (kalmanParamR + measurement.p.z + kalmanParamQ);
}
private void OnDestroy()
{
worker?.Dispose();
// Assuming model with multiple inputs that were passed as a Dictionary
foreach (var key in inputs.Keys)
{
inputs[key].Dispose();
}
inputs.Clear();
}
}