diff --git a/app.py b/app.py new file mode 100644 index 0000000..db1f8df --- /dev/null +++ b/app.py @@ -0,0 +1,346 @@ +import os +import argparse +import imageio +import time +import mcubes +import cv2 +import numpy as np +import torch +import trimesh +import rembg +from PIL import Image +from torchvision.transforms import v2 +from pytorch_lightning import seed_everything +from omegaconf import OmegaConf +from einops import rearrange, repeat +from tqdm import tqdm +from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler + +from src.utils.train_util import instantiate_from_config +from src.utils.camera_util import ( + FOV_to_intrinsics, + get_zero123plus_input_cameras, + get_circular_camera_poses, +) +from src.utils.mesh_util import save_obj +from src.utils.infer_util import remove_background, resize_foreground, images_to_video + +import tempfile +from functools import partial + + +def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): + """ + Get the rendering camera parameters. + """ + c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) + if is_flexicubes: + cameras = torch.linalg.inv(c2ws) + cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) + else: + extrinsics = c2ws.flatten(-2) + intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) + cameras = torch.cat([extrinsics, intrinsics], dim=-1) + cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) + return cameras + + +def images_to_video(images, output_path, fps=30): + # images: (N, C, H, W) + os.makedirs(os.path.dirname(output_path), exist_ok=True) + frames = [] + for i in range(images.shape[0]): + frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) + assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ + f"Frame shape mismatch: {frame.shape} vs {images.shape}" + assert frame.min() >= 0 and frame.max() <= 255, \ + f"Frame value out of range: {frame.min()} ~ {frame.max()}" + frames.append(frame) + imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') + + +############################################################################### +# Configuration. +############################################################################### + +seed_everything(0) + +config_path = 'configs/instant-mesh-large-eval.yaml' +config = OmegaConf.load(config_path) +config_name = os.path.basename(config_path).replace('.yaml', '') +model_config = config.model_config +infer_config = config.infer_config + +IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False + +device = torch.device('cuda') + +# load diffusion model +print('Loading diffusion model ...') +pipeline = DiffusionPipeline.from_pretrained( + "sudo-ai/zero123plus-v1.2", + custom_pipeline="zero123plus", + torch_dtype=torch.float16, +) +pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( + pipeline.scheduler.config, timestep_spacing='trailing' +) + +# load custom white-background UNet +state_dict = torch.load(infer_config.unet_path, map_location='cpu') +pipeline.unet.load_state_dict(state_dict, strict=True) + +pipeline = pipeline.to(device) + +# load reconstruction model +print('Loading reconstruction model ...') +model = instantiate_from_config(model_config) +state_dict = torch.load(infer_config.model_path, map_location='cpu')['state_dict'] +state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} +model.load_state_dict(state_dict, strict=True) + +model = model.to(device) +if IS_FLEXICUBES: + model.init_flexicubes_geometry(device) +model = model.eval() + +print('Loading Finished!') + + +def check_input_image(input_image): + if input_image is None: + raise gr.Error("No image uploaded!") + + +def preprocess(input_image, do_remove_background): + + rembg_session = rembg.new_session() if do_remove_background else None + + #input_image = Image.open(image_file) + if do_remove_background: + input_image = remove_background(input_image, rembg_session) + + return input_image + + +def generate_mvs(input_image, sample_steps, sample_seed): + + seed_everything(sample_seed) + + # sampling + generator = torch.Generator(device=device) + z123_image = pipeline( + input_image, + num_inference_steps=sample_steps, + generator=generator, + ).images[0] + + show_image = np.asarray(z123_image, dtype=np.uint8) + show_image = torch.from_numpy(show_image) # (960, 640, 3) + show_image = rearrange(show_image, '(n h) (m w) c -> (m h) (n w) c', n=3, m=2) + show_image = Image.fromarray(show_image.numpy()) + + return z123_image, show_image + +def make_mesh(mesh_fpath, planes): + + mesh_basename = os.path.basename(mesh_fpath).split('.')[0] + mesh_dirname = os.path.dirname(mesh_fpath) + mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") + + with torch.no_grad(): + # get mesh + + mesh_out = model.extract_mesh( + planes, + use_texture_map=False, + **infer_config, + ) + + vertices, faces, vertex_colors = mesh_out + vertices = vertices[:, [0, 2, 1]] + vertices[:, -1] *= -1 + + save_obj(vertices, faces, vertex_colors, mesh_fpath) + + print(f"Mesh saved to {mesh_fpath}") + + return mesh_fpath + +def make3d(images): + + images = np.asarray(images, dtype=np.float32) / 255.0 + images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) + images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) + + input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=2.5).to(device) + render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) + + images = images.unsqueeze(0).to(device) + images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) + + mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name + print(mesh_fpath) + mesh_basename = os.path.basename(mesh_fpath).split('.')[0] + mesh_dirname = os.path.dirname(mesh_fpath) + video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") + + with torch.no_grad(): + # get triplane + planes = model.forward_planes(images, input_cameras) + + # get video + chunk_size = 20 if IS_FLEXICUBES else 1 + render_size = 384 + + frames = [] + for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): + if IS_FLEXICUBES: + frame = model.forward_geometry( + planes, + render_cameras[:, i:i+chunk_size], + render_size=render_size, + )['img'] + else: + frame = model.synthesizer( + planes, + cameras=render_cameras[:, i:i+chunk_size], + render_size=render_size, + )['images_rgb'] + frames.append(frame) + frames = torch.cat(frames, dim=1) + + images_to_video( + frames[0], + video_fpath, + fps=30, + ) + + print(f"Video saved to {video_fpath}") + + mesh_fpath = make_mesh(mesh_fpath, planes) + + return video_fpath, mesh_fpath + + +def run_example(image_file): + + preprocessed = preprocess(image_file, False, 0.85) + mv_images, _ = generate_mvs(preprocessed, 20, 0) + video_name, mesh_fpath, planes = make3d(mv_images) + mesh_name = make_mesh(mesh_fpath, planes) + + return preprocessed, mesh_name, video_name + + +import gradio as gr + +HEADER = ''' +