Browse Source

update the mardown description of app.py

main
bluestyle97 8 months ago
parent
commit
0c79597bc3
  1. 26
      app.py

26
app.py

@ -227,14 +227,22 @@ import gradio as gr
_HEADER_ = ''' _HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2> <h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
'''
_LINKS_ = ''' **InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture.
<h3>Code is available at <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>GitHub</a></h3>
<h3>Report is available at <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a></h3> Code: <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>.
**Important Notes:**
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>.
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
''' '''
_CITE_ = r""" _CITE_ = r"""
If InstantMesh is helpful, please help to the <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/InstantMesh?style=social)](https://github.com/TencentARC/InstantMesh)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex ```bibtex
@article{xu2024instantmesh, @article{xu2024instantmesh,
title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models}, title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models},
@ -243,6 +251,14 @@ _CITE_ = r"""
year={2024} year={2024}
} }
``` ```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>bluestyle928@gmail.com</b>.
""" """
with gr.Blocks() as demo: with gr.Blocks() as demo:
@ -322,6 +338,7 @@ with gr.Blocks() as demo:
#width=768, #width=768,
interactive=False, interactive=False,
) )
gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
with gr.Tab("GLB"): with gr.Tab("GLB"):
output_model_glb = gr.Model3D( output_model_glb = gr.Model3D(
label="Output Model (GLB Format)", label="Output Model (GLB Format)",
@ -333,7 +350,6 @@ with gr.Blocks() as demo:
with gr.Row(): with gr.Row():
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''') gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
gr.Markdown(_LINKS_)
gr.Markdown(_CITE_) gr.Markdown(_CITE_)
mv_images = gr.State() mv_images = gr.State()

Loading…
Cancel
Save