Browse Source

update for now

main
cailean 3 months ago
parent
commit
51f29d7a8b
  1. 28
      MeshRenderingPipeline.py
  2. 13
      ObjSender.py
  3. 404
      app_low_varm.py
  4. 4
      application.py
  5. 168
      ex/bird.gltf
  6. 168
      ex/sand.gltf
  7. 168
      ex/van.gltf
  8. BIN
      examples/Mr_tayto.webp
  9. BIN
      examples/sand.jpg
  10. BIN
      examples/van.jpg

28
MeshRenderingPipeline.py

@ -2,6 +2,7 @@ import os
import numpy as np import numpy as np
import torch import torch
import rembg import rembg
import time
from PIL import Image from PIL import Image
from torchvision.transforms import v2 from torchvision.transforms import v2
from tqdm import tqdm from tqdm import tqdm
@ -11,7 +12,7 @@ from omegaconf import OmegaConf
from einops import rearrange from einops import rearrange
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
import subprocess import subprocess
from ObjSender import ObjSender
from src.utils.train_util import instantiate_from_config from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import ( from src.utils.camera_util import (
@ -25,8 +26,8 @@ from src.utils.infer_util import remove_background, resize_foreground, save_vide
class MeshRenderingPipeline: class MeshRenderingPipeline:
def __init__(self, config_file, input_path, output_path='outputs/', diffusion_steps=75, def __init__(self, config_file, input_path, output_path='outputs/', diffusion_steps=75,
seed=42, scale=1.0, distance=4.5, view=6, no_rembg=False, export_texmap=False, seed=42, scale=1.0, distance=4.5, view=4, no_rembg=False, export_texmap=False,
save_video=False, gltf=False, remove=False, gltf_path='C:/Users/caile/Desktop/'): save_video=False, gltf=False, remove=False, gltf_path='C:/Users/caile/Desktop/', local=False):
self.config_file = config_file self.config_file = config_file
self.input_path = input_path self.input_path = input_path
self.output_path = output_path self.output_path = output_path
@ -41,6 +42,8 @@ class MeshRenderingPipeline:
self.gltf = gltf self.gltf = gltf
self.remove = remove self.remove = remove
self.gltf_path = gltf_path self.gltf_path = gltf_path
self.sender = ObjSender("localhost", "3000")
self.local = local
# Parse configuration and setup # Parse configuration and setup
self._parse_config() self._parse_config()
@ -84,6 +87,7 @@ class MeshRenderingPipeline:
self.pipeline = self.pipeline.to(self.device) self.pipeline = self.pipeline.to(self.device)
# Load reconstruction model # Load reconstruction model
print('Loading reconstruction model ...') print('Loading reconstruction model ...')
self.model = instantiate_from_config(self.model_config) self.model = instantiate_from_config(self.model_config)
@ -110,6 +114,7 @@ class MeshRenderingPipeline:
os.makedirs(self.video_path, exist_ok=True) os.makedirs(self.video_path, exist_ok=True)
def process_image(self, image_file, idx, total_num_files, rembg_session): def process_image(self, image_file, idx, total_num_files, rembg_session):
if rembg_session == None: if rembg_session == None:
rembg_session = None if self.no_rembg else rembg.new_session() rembg_session = None if self.no_rembg else rembg.new_session()
@ -122,12 +127,22 @@ class MeshRenderingPipeline:
input_image = remove_background(input_image, rembg_session) input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85) input_image = resize_foreground(input_image, 0.85)
generator = torch.Generator(device=self.device)
self.pipeline = self.pipeline.to(self.device)
# Sampling # Sampling
output_image = self.pipeline( output_image = self.pipeline(
input_image, input_image,
num_inference_steps=self.diffusion_steps, num_inference_steps=self.diffusion_steps,
generator=generator
).images[0] ).images[0]
self.pipeline.to("cpu")
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_cached()
img_path = os.path.join(self.image_path, f'{name}.png') img_path = os.path.join(self.image_path, f'{name}.png')
output_image.save(img_path) output_image.save(img_path)
print(f"Image of viewpoints saved to {os.path.join(self.image_path, f'{name}.png')}") print(f"Image of viewpoints saved to {os.path.join(self.image_path, f'{name}.png')}")
@ -139,6 +154,7 @@ class MeshRenderingPipeline:
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0 * self.scale).to(self.device) input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0 * self.scale).to(self.device)
chunk_size = 20 if self.IS_FLEXICUBES else 1 chunk_size = 20 if self.IS_FLEXICUBES else 1
print(f'Creating {name} ...') print(f'Creating {name} ...')
start_time = time.time()
images = images.unsqueeze(0).to(self.device) images = images.unsqueeze(0).to(self.device)
images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1) images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1)
@ -206,6 +222,8 @@ class MeshRenderingPipeline:
# Check if the process was successful # Check if the process was successful
if process.returncode == 0: if process.returncode == 0:
print(f'Successfully converted {mesh_path_idx} to {output_path}') print(f'Successfully converted {mesh_path_idx} to {output_path}')
if self.local is False:
self.sender.send_file(output_path)
else: else:
print(f'Error converting {mesh_path_idx}: {process.stderr}') print(f'Error converting {mesh_path_idx}: {process.stderr}')
@ -215,6 +233,10 @@ class MeshRenderingPipeline:
os.remove(mtl_path_idx) os.remove(mtl_path_idx)
os.remove(img_path) os.remove(img_path)
os.remove(texmap_path_idx) os.remove(texmap_path_idx)
end_time = time.time()
elapsed_time = end_time - start_time
print(f'Total Time: {elapsed_time}')
pass pass
def run_pipeline_sequence(self, stop_event): def run_pipeline_sequence(self, stop_event):

13
ObjSender.py

@ -0,0 +1,13 @@
import requests
class ObjSender:
def __init__(self, ip, port):
self.ip = ip
self.port = port
self.server_url = f"http://{self.ip}:{self.port}/upload"
print(f"Files will be send to {self.server_url}!")
def send_file(self, file_path):
with open(file_path, 'rb') as file:
response = requests.post(self.server_url, files={'file': file})
print(response.text)

404
app_low_varm.py

@ -0,0 +1,404 @@
import os
import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video
import tempfile
from huggingface_hub import hf_hub_download
if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
device0 = torch.device('cuda:0')
device1 = torch.device('cuda:1')
else:
device0 = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device1 = device0
# Define the cache directory for model files
model_cache_dir = './ckpts/'
os.makedirs(model_cache_dir, exist_ok=True)
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
"""
Get the rendering camera parameters.
"""
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def images_to_video(images, output_path, fps=30):
# images: (N, C, H, W)
os.makedirs(os.path.dirname(output_path), exist_ok=True)
frames = []
for i in range(images.shape[0]):
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
f"Frame shape mismatch: {frame.shape} vs {images.shape}"
assert frame.min() >= 0 and frame.max() <= 255, \
f"Frame value out of range: {frame.min()} ~ {frame.max()}"
frames.append(frame)
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')
###############################################################################
# Configuration.
###############################################################################
seed_everything(0)
config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
device = torch.device('cuda')
# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
cache_dir=model_cache_dir
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# load custom white-background UNet
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model", cache_dir=model_cache_dir)
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device0)
print("Loading restruct model ...")
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model", cache_dir=model_cache_dir)
model = instantiate_from_config(model_config)
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background):
rembg_session = rembg.new_session() if do_remove_background else None
if do_remove_background:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
return input_image
def generate_mvs(input_image, sample_steps, sample_seed):
seed_everything(sample_seed)
# sampling
generator = torch.Generator(device=device0)
#if pipeline is in cpu ,move to gpu
pipeline.to(device0)
z123_image = pipeline(
input_image,
num_inference_steps=sample_steps,
generator=generator,
).images[0]
pipeline.to("cpu")
#shifang xiancun
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_cached()
show_image = np.asarray(z123_image, dtype=np.uint8)
show_image = torch.from_numpy(show_image) # (960, 640, 3)
show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
show_image = Image.fromarray(show_image.numpy())
return z123_image, show_image
def make_mesh(mesh_fpath, planes):
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")
print('Loading Finished!')
with torch.no_grad():
# get mesh
mesh_out = model.extract_mesh(
planes,
use_texture_map=False,
**infer_config,
)
vertices, faces, vertex_colors = mesh_out
vertices = vertices[:, [1, 2, 0]]
save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
save_obj(vertices, faces, vertex_colors, mesh_fpath)
print(f"Mesh saved to {mesh_fpath}")
return mesh_fpath, mesh_glb_fpath
def make3d(images):
global model
images = np.asarray(images, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device0)
render_cameras = get_render_cameras(
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device0)
images = images.unsqueeze(0).to(device0)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
print(mesh_fpath)
mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
mesh_dirname = os.path.dirname(mesh_fpath)
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
# load reconstruction model
print(f'Loading reconstruction model ...:{model_ckpt_path}')
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
print("===make model to gpu 0")
model = model.to(device0)
print("===make model to gpu 0:model:{next(model.parameters()).device}")
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device0, fovy=30.0)
model = model.eval()
with torch.no_grad():
# get triplane
print(f"images:{images.device},model:{next(model.parameters()).device}")
planes = model.forward_planes(images, input_cameras)
# get video
chunk_size = 20 if IS_FLEXICUBES else 1
render_size = 384
frames = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if IS_FLEXICUBES:
frame = model.forward_geometry(
planes,
render_cameras[:, i:i+chunk_size],
render_size=render_size,
)['img']
else:
frame = model.synthesizer(
planes,
cameras=render_cameras[:, i:i+chunk_size],
render_size=render_size,
)['images_rgb']
frames.append(frame)
frames = torch.cat(frames, dim=1)
images_to_video(
frames[0],
video_fpath,
fps=30,
)
print(f"Video saved to {video_fpath}")
mesh_fpath, mesh_glb_fpath = make_mesh(mesh_fpath, planes)
#释放instantidMesh
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_cached()
model.to("cpu")
return video_fpath, mesh_fpath, mesh_glb_fpath
import gradio as gr
_HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>
**InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture.
Code: <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>.
**Important Notes:**
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>.
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
'''
_CITE_ = r"""
If InstantMesh is helpful, please help to the <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/InstantMesh?style=social)](https://github.com/TencentARC/InstantMesh)
---
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xu2024instantmesh,
title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models},
author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying},
journal={arXiv preprint arXiv:2404.07191},
year={2024}
}
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>bluestyle928@gmail.com</b>.
"""
with gr.Blocks() as demo:
gr.Markdown(_HEADER_)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
width=256,
height=256,
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(
label="Processed Image",
image_mode="RGBA",
width=256,
height=256,
type="pil",
interactive=False
)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True
)
sample_seed = gr.Number(value=42, label="Seed Value", precision=0)
sample_steps = gr.Slider(
label="Sample Steps",
minimum=30,
maximum=75,
value=75,
step=5
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=[input_image],
label="Examples",
examples_per_page=20
)
with gr.Column():
with gr.Row():
with gr.Column():
mv_show_images = gr.Image(
label="Generated Multi-views",
type="pil",
width=379,
interactive=False
)
with gr.Column():
output_video = gr.Video(
label="video", format="mp4",
width=379,
autoplay=True,
interactive=False
)
with gr.Row():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
#width=768,
interactive=False,
)
gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(
label="Output Model (GLB Format)",
#width=768,
interactive=False,
)
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
with gr.Row():
gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')
gr.Markdown(_CITE_)
mv_images = gr.State()
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background],
outputs=[processed_image],
).success(
fn=generate_mvs,
inputs=[processed_image, sample_steps, sample_seed],
outputs=[mv_images, mv_show_images],
).success(
fn=make3d,
inputs=[mv_images],
outputs=[output_video, output_model_obj, output_model_glb]
)
demo.queue(max_size=10)
demo.launch(server_name="0.0.0.0", server_port=7860)

4
application.py

@ -39,7 +39,8 @@ class App:
args.save_video, args.save_video,
args.gltf, args.gltf,
args.remove, args.remove,
args.gltf_path args.gltf_path,
args.local
) )
def start_generation(self): def start_generation(self):
@ -121,6 +122,7 @@ if __name__ == '__main__':
parser.add_argument('--gltf', action='store_true', help='Export a gtlf file.') parser.add_argument('--gltf', action='store_true', help='Export a gtlf file.')
parser.add_argument('--remove', action='store_true', help='Removes obj, mtl, texmap, nv files.') parser.add_argument('--remove', action='store_true', help='Removes obj, mtl, texmap, nv files.')
parser.add_argument('--gltf_path', type=str, default='C:/Users/caile/Desktop/InstantMesh/ex', help='Output directory.') parser.add_argument('--gltf_path', type=str, default='C:/Users/caile/Desktop/InstantMesh/ex', help='Output directory.')
parser.add_argument('--local', action='store_true', help='Dont send over a network')
args = parser.parse_args() args = parser.parse_args()
app = App(args) app = App(args)

168
ex/bird.gltf

File diff suppressed because one or more lines are too long

168
ex/sand.gltf

File diff suppressed because one or more lines are too long

168
ex/van.gltf

File diff suppressed because one or more lines are too long

BIN
examples/Mr_tayto.webp

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.3 KiB

BIN
examples/sand.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

BIN
examples/van.jpg

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Loading…
Cancel
Save