Browse Source

Merge pull request #60 from catid/main

Add multi-gpu support, model cache, fix README and deprecated containers
main
Jiale Xu 9 months ago
committed by GitHub
parent
commit
5dcb994e4e
No known key found for this signature in database GPG Key ID: B5690EEEBB952194
  1. 8
      README.md
  2. 29
      app.py
  3. 16
      docker/Dockerfile
  4. 25
      docker/README.md

8
README.md

@ -22,7 +22,7 @@ https://github.com/TencentARC/InstantMesh/assets/20635237/dab3511e-e7c6-4c0b-bab
- [x] Release inference and training code.
- [x] Release model weights.
- [x] Release huggingface gradio demo. Please try it at [demo](https://huggingface.co/spaces/TencentARC/InstantMesh) link.
- [ ] Add support to low-memory GPU environment.
- [x] Add support to low-memory GPU environment.
- [ ] Add support to more multi-view diffusion models.
# ⚙️ Dependencies and Installation
@ -66,14 +66,14 @@ By default, we use the `instant-mesh-large` reconstruction model variant.
## Start a local gradio demo
To start a gradio demo in your local machine, simply running:
To start a gradio demo in your local machine, simply run:
```bash
python app.py
CUDA_VISIBLE_DEVICES=0 python app.py
```
## Running with command line
To generate 3D meshes from images via command line, simply running:
To generate 3D meshes from images via command line, simply run:
```bash
python run.py configs/instant-mesh-large.yaml examples/hatsune_miku.png --save_video
```

29
app.py

@ -23,6 +23,16 @@ from src.utils.infer_util import remove_background, resize_foreground, images_to
import tempfile
from huggingface_hub import hf_hub_download
if torch.cuda.is_available() and torch.cuda.device_count() >= 2:
device0 = torch.device('cuda:0')
device1 = torch.device('cuda:1')
else:
device0 = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device1 = device0
# Define the cache directory for model files
model_cache_dir = './models/'
os.makedirs(model_cache_dir, exist_ok=True)
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
"""
@ -76,29 +86,30 @@ pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
cache_dir=model_cache_dir
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# load custom white-background UNet
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model", cache_dir=model_cache_dir)
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
pipeline = pipeline.to(device0)
# load reconstruction model
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model", cache_dir=model_cache_dir)
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model = model.to(device1)
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0)
model.init_flexicubes_geometry(device1, fovy=30.0)
model = model.eval()
print('Loading Finished!')
@ -124,7 +135,7 @@ def generate_mvs(input_image, sample_steps, sample_seed):
seed_everything(sample_seed)
# sampling
generator = torch.Generator(device=device)
generator = torch.Generator(device=device0)
z123_image = pipeline(
input_image,
num_inference_steps=sample_steps,
@ -172,11 +183,11 @@ def make3d(images):
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device1)
render_cameras = get_render_cameras(
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device)
batch_size=1, radius=4.5, elevation=20.0, is_flexicubes=IS_FLEXICUBES).to(device1)
images = images.unsqueeze(0).to(device)
images = images.unsqueeze(0).to(device1)
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name

16
docker/Dockerfile

@ -1,8 +1,10 @@
# get the development image from nvidia cuda 12.1
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04
FROM nvidia/cuda:12.4.1-runtime-ubuntu22.04
LABEL name="instantmesh" \
maintainer="instantmesh"
LABEL name="instantmesh" maintainer="instantmesh"
# Add a volume for downloaded models
VOLUME /workspace/models
# create workspace folder and set it as working directory
RUN mkdir -p /workspace/instantmesh
@ -12,12 +14,12 @@ WORKDIR /workspace
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get update && \
apt-get install -y tzdata && \
ln -fs /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && \
ln -fs /usr/share/zoneinfo/America/Chicago /etc/localtime && \
dpkg-reconfigure --frontend noninteractive tzdata
# update package lists and install git, wget, vim, libegl1-mesa-dev, and libglib2.0-0
RUN apt-get update && \
apt-get install -y git wget vim libegl1-mesa-dev libglib2.0-0 unzip
apt-get install -y build-essential git wget vim libegl1-mesa-dev libglib2.0-0 unzip
# install conda
RUN wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh && \
@ -36,7 +38,7 @@ RUN conda create -n instantmesh python=3.10 && echo "source activate instantmesh
ENV PATH /workspace/miniconda3/envs/instantmesh/bin:$PATH
RUN conda install Ninja
RUN conda install cuda -c nvidia/label/cuda-12.1.0 -y
RUN conda install cuda -c nvidia/label/cuda-12.4.1 -y
RUN pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu121
RUN pip install xformers==0.0.22.post7
@ -52,4 +54,4 @@ RUN pip install -r requirements.txt
COPY . /workspace/instantmesh
# Run the command when the container starts
CMD ["python", "app.py"]
CMD ["python", "app.py"]

25
docker/README.md

@ -1,13 +1,28 @@
# Docker setup
This docker setup is tested on WSL(Ubuntu).
This docker setup is tested on Ubuntu.
make sure you are under directory yourworkspace/instantmesh/
run
Build docker image:
`docker build -t instantmesh/deploy:cuda12.1 -f docker/Dockerfile .`
```bash
docker build -t instantmesh -f docker/Dockerfile .
```
then run
Run docker image with a local model cache (so it is fast when container is started next time):
`docker run --gpus all -it instantmesh/deploy:cuda12.1`
```bash
mkdir -p $HOME/models/
export MODEL_DIR=$HOME/models/
docker run -it -p 43839:43839 --platform=linux/amd64 --gpus all -v $MODEL_DIR:/workspace/instantmesh/models instantmesh
```
To use specific GPUs:
```bash
docker run -it -p 43839:43839 --platform=linux/amd64 --gpus '"device=0,1"' -v $MODEL_DIR:/workspace/instantmesh/models instantmesh
```
Navigate to `http://localhost:43839` to use the demo.

Loading…
Cancel
Save