bluestyle97
10 months ago
3 changed files with 326 additions and 1 deletions
@ -0,0 +1,326 @@ |
|||
import os |
|||
import math |
|||
import json |
|||
from pathlib import Path |
|||
|
|||
import cv2 |
|||
import numpy as np |
|||
from PIL import Image |
|||
import webdataset as wds |
|||
import pytorch_lightning as pl |
|||
|
|||
import torch |
|||
import torch.nn.functional as F |
|||
from torch.utils.data import Dataset |
|||
from torch.utils.data import DataLoader |
|||
from torch.utils.data.distributed import DistributedSampler |
|||
from torchvision import transforms |
|||
|
|||
from src.utils.train_util import instantiate_from_config |
|||
from src.utils.camera_util import ( |
|||
FOV_to_intrinsics, |
|||
center_looking_at_camera_pose, |
|||
get_circular_camera_poses, |
|||
) |
|||
|
|||
|
|||
class DataModuleFromConfig(pl.LightningDataModule): |
|||
def __init__( |
|||
self, |
|||
batch_size=8, |
|||
num_workers=4, |
|||
train=None, |
|||
validation=None, |
|||
test=None, |
|||
**kwargs, |
|||
): |
|||
super().__init__() |
|||
|
|||
self.batch_size = batch_size |
|||
self.num_workers = num_workers |
|||
|
|||
self.dataset_configs = dict() |
|||
if train is not None: |
|||
self.dataset_configs['train'] = train |
|||
if validation is not None: |
|||
self.dataset_configs['validation'] = validation |
|||
if test is not None: |
|||
self.dataset_configs['test'] = test |
|||
|
|||
def setup(self, stage): |
|||
|
|||
if stage in ['fit']: |
|||
self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs) |
|||
else: |
|||
raise NotImplementedError |
|||
|
|||
def train_dataloader(self): |
|||
|
|||
sampler = DistributedSampler(self.datasets['train']) |
|||
return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler) |
|||
|
|||
def val_dataloader(self): |
|||
|
|||
sampler = DistributedSampler(self.datasets['validation']) |
|||
return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler) |
|||
|
|||
def test_dataloader(self): |
|||
|
|||
return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) |
|||
|
|||
|
|||
class ObjaverseData(Dataset): |
|||
def __init__(self, |
|||
root_dir='objaverse/', |
|||
meta_fname='valid_paths.json', |
|||
input_image_dir='rendering_random_32views', |
|||
target_image_dir='rendering_random_32views', |
|||
input_view_num=6, |
|||
target_view_num=2, |
|||
total_view_n=32, |
|||
fov=50, |
|||
camera_rotation=True, |
|||
validation=False, |
|||
): |
|||
self.root_dir = Path(root_dir) |
|||
self.input_image_dir = input_image_dir |
|||
self.target_image_dir = target_image_dir |
|||
|
|||
self.input_view_num = input_view_num |
|||
self.target_view_num = target_view_num |
|||
self.total_view_n = total_view_n |
|||
self.fov = fov |
|||
self.camera_rotation = camera_rotation |
|||
|
|||
with open(os.path.join(root_dir, meta_fname)) as f: |
|||
filtered_dict = json.load(f) |
|||
paths = filtered_dict['good_objs'] |
|||
self.paths = paths |
|||
|
|||
self.depth_scale = 5.0 |
|||
|
|||
total_objects = len(self.paths) |
|||
print('============= length of dataset %d =============' % len(self.paths)) |
|||
|
|||
def __len__(self): |
|||
return len(self.paths) |
|||
|
|||
def load_im(self, path, color): |
|||
''' |
|||
replace background pixel with random color in rendering |
|||
''' |
|||
pil_img = Image.open(path) |
|||
|
|||
image = np.asarray(pil_img, dtype=np.float32) / 255. |
|||
alpha = image[:, :, 3:] |
|||
image = image[:, :, :3] * alpha + color * (1 - alpha) |
|||
|
|||
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() |
|||
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() |
|||
return image, alpha |
|||
|
|||
def __getitem__(self, index): |
|||
# load data |
|||
while True: |
|||
input_image_path = os.path.join(self.root_dir, self.input_image_dir, self.paths[index]) |
|||
target_image_path = os.path.join(self.root_dir, self.target_image_dir, self.paths[index]) |
|||
|
|||
indices = np.random.choice(range(self.total_view_n), self.input_view_num + self.target_view_num, replace=False) |
|||
input_indices = indices[:self.input_view_num] |
|||
target_indices = indices[self.input_view_num:] |
|||
|
|||
'''background color, default: white''' |
|||
bg_white = [1., 1., 1.] |
|||
bg_black = [0., 0., 0.] |
|||
|
|||
image_list = [] |
|||
alpha_list = [] |
|||
depth_list = [] |
|||
normal_list = [] |
|||
pose_list = [] |
|||
|
|||
try: |
|||
input_cameras = np.load(os.path.join(input_image_path, 'cameras.npz'))['cam_poses'] |
|||
for idx in input_indices: |
|||
image, alpha = self.load_im(os.path.join(input_image_path, '%03d.png' % idx), bg_white) |
|||
normal, _ = self.load_im(os.path.join(input_image_path, '%03d_normal.png' % idx), bg_black) |
|||
depth = cv2.imread(os.path.join(input_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale |
|||
depth = torch.from_numpy(depth).unsqueeze(0) |
|||
pose = input_cameras[idx] |
|||
pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0) |
|||
|
|||
image_list.append(image) |
|||
alpha_list.append(alpha) |
|||
depth_list.append(depth) |
|||
normal_list.append(normal) |
|||
pose_list.append(pose) |
|||
|
|||
target_cameras = np.load(os.path.join(target_image_path, 'cameras.npz'))['cam_poses'] |
|||
for idx in target_indices: |
|||
image, alpha = self.load_im(os.path.join(target_image_path, '%03d.png' % idx), bg_white) |
|||
normal, _ = self.load_im(os.path.join(target_image_path, '%03d_normal.png' % idx), bg_black) |
|||
depth = cv2.imread(os.path.join(target_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale |
|||
depth = torch.from_numpy(depth).unsqueeze(0) |
|||
pose = target_cameras[idx] |
|||
pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0) |
|||
|
|||
image_list.append(image) |
|||
alpha_list.append(alpha) |
|||
depth_list.append(depth) |
|||
normal_list.append(normal) |
|||
pose_list.append(pose) |
|||
|
|||
except Exception as e: |
|||
print(e) |
|||
index = np.random.randint(0, len(self.paths)) |
|||
continue |
|||
|
|||
break |
|||
|
|||
images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W) |
|||
alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W) |
|||
depths = torch.stack(depth_list, dim=0).float() # (6+V, 1, H, W) |
|||
normals = torch.stack(normal_list, dim=0).float() # (6+V, 3, H, W) |
|||
w2cs = torch.from_numpy(np.stack(pose_list, axis=0)).float() # (6+V, 4, 4) |
|||
c2ws = torch.linalg.inv(w2cs).float() |
|||
|
|||
normals = normals * 2.0 - 1.0 |
|||
normals = F.normalize(normals, dim=1) |
|||
normals = (normals + 1.0) / 2.0 |
|||
normals = torch.lerp(torch.zeros_like(normals), normals, alphas) |
|||
|
|||
# random rotation along z axis |
|||
if self.camera_rotation: |
|||
degree = np.random.uniform(0, math.pi * 2) |
|||
rot = torch.tensor([ |
|||
[np.cos(degree), -np.sin(degree), 0, 0], |
|||
[np.sin(degree), np.cos(degree), 0, 0], |
|||
[0, 0, 1, 0], |
|||
[0, 0, 0, 1], |
|||
]).unsqueeze(0).float() |
|||
c2ws = torch.matmul(rot, c2ws) |
|||
|
|||
# rotate normals |
|||
N, _, H, W = normals.shape |
|||
normals = normals * 2.0 - 1.0 |
|||
normals = torch.matmul(rot[:, :3, :3], normals.view(N, 3, -1)).view(N, 3, H, W) |
|||
normals = F.normalize(normals, dim=1) |
|||
normals = (normals + 1.0) / 2.0 |
|||
normals = torch.lerp(torch.zeros_like(normals), normals, alphas) |
|||
|
|||
# random scaling |
|||
if np.random.rand() < 0.5: |
|||
scale = np.random.uniform(0.8, 1.0) |
|||
c2ws[:, :3, 3] *= scale |
|||
depths *= scale |
|||
|
|||
# instrinsics of perspective cameras |
|||
K = FOV_to_intrinsics(self.fov) |
|||
Ks = K.unsqueeze(0).repeat(self.input_view_num + self.target_view_num, 1, 1).float() |
|||
|
|||
data = { |
|||
'input_images': images[:self.input_view_num], # (6, 3, H, W) |
|||
'input_alphas': alphas[:self.input_view_num], # (6, 1, H, W) |
|||
'input_depths': depths[:self.input_view_num], # (6, 1, H, W) |
|||
'input_normals': normals[:self.input_view_num], # (6, 3, H, W) |
|||
'input_c2ws': c2ws[:self.input_view_num], # (6, 4, 4) |
|||
'input_Ks': Ks[:self.input_view_num], # (6, 3, 3) |
|||
|
|||
# lrm generator input and supervision |
|||
'target_images': images[self.input_view_num:], # (V, 3, H, W) |
|||
'target_alphas': alphas[self.input_view_num:], # (V, 1, H, W) |
|||
'target_depths': depths[self.input_view_num:], # (V, 1, H, W) |
|||
'target_normals': normals[self.input_view_num:], # (V, 3, H, W) |
|||
'target_c2ws': c2ws[self.input_view_num:], # (V, 4, 4) |
|||
'target_Ks': Ks[self.input_view_num:], # (V, 3, 3) |
|||
|
|||
'depth_available': 1, |
|||
} |
|||
return data |
|||
|
|||
|
|||
class ValidationData(Dataset): |
|||
def __init__(self, |
|||
root_dir='objaverse/', |
|||
input_view_num=6, |
|||
input_image_size=256, |
|||
fov=30, |
|||
): |
|||
self.root_dir = Path(root_dir) |
|||
self.input_view_num = input_view_num |
|||
self.input_image_size = input_image_size |
|||
self.fov = fov |
|||
|
|||
self.paths = sorted(os.listdir(self.root_dir)) |
|||
print('============= length of dataset %d =============' % len(self.paths)) |
|||
|
|||
cam_distance = 4.0 |
|||
azimuths = np.array([30, 90, 150, 210, 270, 330]) |
|||
elevations = np.array([20, -10, 20, -10, 20, -10]) |
|||
azimuths = np.deg2rad(azimuths) |
|||
elevations = np.deg2rad(elevations) |
|||
|
|||
x = cam_distance * np.cos(elevations) * np.cos(azimuths) |
|||
y = cam_distance * np.cos(elevations) * np.sin(azimuths) |
|||
z = cam_distance * np.sin(elevations) |
|||
|
|||
cam_locations = np.stack([x, y, z], axis=-1) |
|||
cam_locations = torch.from_numpy(cam_locations).float() |
|||
c2ws = center_looking_at_camera_pose(cam_locations) |
|||
self.c2ws = c2ws.float() |
|||
self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float() |
|||
|
|||
render_c2ws = get_circular_camera_poses(M=8, radius=cam_distance, elevation=20.0) |
|||
render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1) |
|||
self.render_c2ws = render_c2ws.float() |
|||
self.render_Ks = render_Ks.float() |
|||
|
|||
def __len__(self): |
|||
return len(self.paths) |
|||
|
|||
def load_im(self, path, color): |
|||
''' |
|||
replace background pixel with random color in rendering |
|||
''' |
|||
pil_img = Image.open(path) |
|||
pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC) |
|||
|
|||
image = np.asarray(pil_img, dtype=np.float32) / 255. |
|||
if image.shape[-1] == 4: |
|||
alpha = image[:, :, 3:] |
|||
image = image[:, :, :3] * alpha + color * (1 - alpha) |
|||
else: |
|||
alpha = np.ones_like(image[:, :, :1]) |
|||
|
|||
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() |
|||
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() |
|||
return image, alpha |
|||
|
|||
def __getitem__(self, index): |
|||
# load data |
|||
input_image_path = os.path.join(self.root_dir, self.paths[index]) |
|||
|
|||
'''background color, default: white''' |
|||
bkg_color = [1.0, 1.0, 1.0] |
|||
|
|||
image_list = [] |
|||
alpha_list = [] |
|||
|
|||
for idx in range(self.input_view_num): |
|||
image, alpha = self.load_im(os.path.join(input_image_path, f'{idx:03d}.png'), bkg_color) |
|||
image_list.append(image) |
|||
alpha_list.append(alpha) |
|||
|
|||
images = torch.stack(image_list, dim=0).float() |
|||
alphas = torch.stack(alpha_list, dim=0).float() |
|||
|
|||
data = { |
|||
'input_images': images, |
|||
'input_alphas': alphas, |
|||
'input_c2ws': self.c2ws, |
|||
'input_Ks': self.Ks, |
|||
|
|||
'render_c2ws': self.render_c2ws, |
|||
'render_Ks': self.render_Ks, |
|||
} |
|||
return data |
Loading…
Reference in new issue