You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
262 lines
9.7 KiB
262 lines
9.7 KiB
import os
|
|
import argparse
|
|
import numpy as np
|
|
import torch
|
|
import rembg
|
|
from PIL import Image
|
|
from torchvision.transforms import v2
|
|
from pytorch_lightning import seed_everything
|
|
from omegaconf import OmegaConf
|
|
from einops import rearrange, repeat
|
|
from tqdm import tqdm
|
|
from huggingface_hub import hf_hub_download
|
|
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
from src.utils.train_util import instantiate_from_config
|
|
from src.utils.camera_util import (
|
|
FOV_to_intrinsics,
|
|
get_zero123plus_input_cameras,
|
|
get_circular_camera_poses,
|
|
)
|
|
from src.utils.mesh_util import save_obj, save_obj_with_mtl
|
|
from src.utils.infer_util import remove_background, resize_foreground, save_video
|
|
|
|
|
|
def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False):
|
|
"""
|
|
Get the rendering camera parameters.
|
|
"""
|
|
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
|
|
if is_flexicubes:
|
|
cameras = torch.linalg.inv(c2ws)
|
|
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
|
else:
|
|
extrinsics = c2ws.flatten(-2)
|
|
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
|
|
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
|
|
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
|
|
return cameras
|
|
|
|
|
|
def render_frames(model, planes, render_cameras, render_size=512, chunk_size=1, is_flexicubes=False):
|
|
"""
|
|
Render frames from triplanes.
|
|
"""
|
|
frames = []
|
|
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
|
|
if is_flexicubes:
|
|
frame = model.forward_geometry(
|
|
planes,
|
|
render_cameras[:, i:i+chunk_size],
|
|
render_size=render_size,
|
|
)['img']
|
|
else:
|
|
frame = model.forward_synthesizer(
|
|
planes,
|
|
render_cameras[:, i:i+chunk_size],
|
|
render_size=render_size,
|
|
)['images_rgb']
|
|
frames.append(frame)
|
|
|
|
frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1
|
|
return frames
|
|
|
|
|
|
###############################################################################
|
|
# Arguments.
|
|
###############################################################################
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('config', type=str, help='Path to config file.')
|
|
parser.add_argument('input_path', type=str, help='Path to input image or directory.')
|
|
parser.add_argument('--output_path', type=str, default='outputs/', help='Output directory.')
|
|
parser.add_argument('--diffusion_steps', type=int, default=75, help='Denoising Sampling steps.')
|
|
parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling.')
|
|
parser.add_argument('--scale', type=float, default=1.0, help='Scale of generated object.')
|
|
parser.add_argument('--distance', type=float, default=4.5, help='Render distance.')
|
|
parser.add_argument('--view', type=int, default=6, choices=[4, 6], help='Number of input views.')
|
|
parser.add_argument('--no_rembg', action='store_true', help='Do not remove input background.')
|
|
parser.add_argument('--export_texmap', action='store_true', help='Export a mesh with texture map.')
|
|
parser.add_argument('--save_video', action='store_true', help='Save a circular-view video.')
|
|
args = parser.parse_args()
|
|
seed_everything(args.seed)
|
|
|
|
###############################################################################
|
|
# Stage 0: Configuration.
|
|
###############################################################################
|
|
|
|
config = OmegaConf.load(args.config)
|
|
config_name = os.path.basename(args.config).replace('.yaml', '')
|
|
model_config = config.model_config
|
|
infer_config = config.infer_config
|
|
|
|
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
|
|
|
|
device = torch.device('cuda')
|
|
|
|
# load diffusion model
|
|
print('Loading diffusion model ...')
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
"sudo-ai/zero123plus-v1.2",
|
|
custom_pipeline="zero123plus",
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
|
|
pipeline.scheduler.config, timestep_spacing='trailing'
|
|
)
|
|
|
|
# load custom white-background UNet
|
|
print('Loading custom white-background unet ...')
|
|
if os.path.exists(infer_config.unet_path):
|
|
unet_ckpt_path = infer_config.unet_path
|
|
else:
|
|
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
|
|
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
|
|
pipeline.unet.load_state_dict(state_dict, strict=True)
|
|
|
|
pipeline = pipeline.to(device)
|
|
|
|
# load reconstruction model
|
|
print('Loading reconstruction model ...')
|
|
model = instantiate_from_config(model_config)
|
|
if os.path.exists(infer_config.model_path):
|
|
model_ckpt_path = infer_config.model_path
|
|
else:
|
|
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename=f"{config_name.replace('-', '_')}.ckpt", repo_type="model")
|
|
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
|
|
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
|
|
model.load_state_dict(state_dict, strict=True)
|
|
|
|
model = model.to(device)
|
|
if IS_FLEXICUBES:
|
|
model.init_flexicubes_geometry(device, fovy=30.0)
|
|
model = model.eval()
|
|
|
|
# make output directories
|
|
image_path = os.path.join(args.output_path, config_name, 'images')
|
|
mesh_path = os.path.join(args.output_path, config_name, 'meshes')
|
|
video_path = os.path.join(args.output_path, config_name, 'videos')
|
|
os.makedirs(image_path, exist_ok=True)
|
|
os.makedirs(mesh_path, exist_ok=True)
|
|
os.makedirs(video_path, exist_ok=True)
|
|
|
|
# process input files
|
|
if os.path.isdir(args.input_path):
|
|
input_files = [
|
|
os.path.join(args.input_path, file)
|
|
for file in os.listdir(args.input_path)
|
|
if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp')
|
|
]
|
|
else:
|
|
input_files = [args.input_path]
|
|
print(f'Total number of input images: {len(input_files)}')
|
|
|
|
|
|
###############################################################################
|
|
# Stage 1: Multiview generation.
|
|
###############################################################################
|
|
|
|
rembg_session = None if args.no_rembg else rembg.new_session()
|
|
|
|
outputs = []
|
|
for idx, image_file in enumerate(input_files):
|
|
name = os.path.basename(image_file).split('.')[0]
|
|
print(f'[{idx+1}/{len(input_files)}] Imagining {name} ...')
|
|
|
|
# remove background optionally
|
|
input_image = Image.open(image_file)
|
|
if not args.no_rembg:
|
|
input_image = remove_background(input_image, rembg_session)
|
|
input_image = resize_foreground(input_image, 0.85)
|
|
|
|
# sampling
|
|
output_image = pipeline(
|
|
input_image,
|
|
num_inference_steps=args.diffusion_steps,
|
|
).images[0]
|
|
|
|
output_image.save(os.path.join(image_path, f'{name}.png'))
|
|
print(f"Image saved to {os.path.join(image_path, f'{name}.png')}")
|
|
|
|
images = np.asarray(output_image, dtype=np.float32) / 255.0
|
|
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
|
|
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
|
|
|
|
outputs.append({'name': name, 'images': images})
|
|
|
|
# delete pipeline to save memory
|
|
del pipeline
|
|
|
|
###############################################################################
|
|
# Stage 2: Reconstruction.
|
|
###############################################################################
|
|
|
|
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0*args.scale).to(device)
|
|
chunk_size = 20 if IS_FLEXICUBES else 1
|
|
|
|
for idx, sample in enumerate(outputs):
|
|
name = sample['name']
|
|
print(f'[{idx+1}/{len(outputs)}] Creating {name} ...')
|
|
|
|
images = sample['images'].unsqueeze(0).to(device)
|
|
images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1)
|
|
|
|
if args.view == 4:
|
|
indices = torch.tensor([0, 2, 4, 5]).long().to(device)
|
|
images = images[:, indices]
|
|
input_cameras = input_cameras[:, indices]
|
|
|
|
with torch.no_grad():
|
|
# get triplane
|
|
planes = model.forward_planes(images, input_cameras)
|
|
|
|
# get mesh
|
|
mesh_path_idx = os.path.join(mesh_path, f'{name}.obj')
|
|
|
|
mesh_out = model.extract_mesh(
|
|
planes,
|
|
use_texture_map=args.export_texmap,
|
|
**infer_config,
|
|
)
|
|
if args.export_texmap:
|
|
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
|
|
save_obj_with_mtl(
|
|
vertices.data.cpu().numpy(),
|
|
uvs.data.cpu().numpy(),
|
|
faces.data.cpu().numpy(),
|
|
mesh_tex_idx.data.cpu().numpy(),
|
|
tex_map.permute(1, 2, 0).data.cpu().numpy(),
|
|
mesh_path_idx,
|
|
)
|
|
else:
|
|
vertices, faces, vertex_colors = mesh_out
|
|
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
|
|
print(f"Mesh saved to {mesh_path_idx}")
|
|
|
|
# get video
|
|
if args.save_video:
|
|
video_path_idx = os.path.join(video_path, f'{name}.mp4')
|
|
render_size = infer_config.render_resolution
|
|
render_cameras = get_render_cameras(
|
|
batch_size=1,
|
|
M=120,
|
|
radius=args.distance,
|
|
elevation=20.0,
|
|
is_flexicubes=IS_FLEXICUBES,
|
|
).to(device)
|
|
|
|
frames = render_frames(
|
|
model,
|
|
planes,
|
|
render_cameras=render_cameras,
|
|
render_size=render_size,
|
|
chunk_size=chunk_size,
|
|
is_flexicubes=IS_FLEXICUBES,
|
|
)
|
|
|
|
save_video(
|
|
frames,
|
|
video_path_idx,
|
|
fps=30,
|
|
)
|
|
print(f"Video saved to {video_path_idx}")
|
|
|