You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
325 lines
12 KiB
325 lines
12 KiB
import os, sys
|
|
import math
|
|
import json
|
|
import importlib
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
import random
|
|
import numpy as np
|
|
from PIL import Image
|
|
import webdataset as wds
|
|
import pytorch_lightning as pl
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.utils.data import Dataset
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
from torchvision import transforms
|
|
|
|
from src.utils.train_util import instantiate_from_config
|
|
from src.utils.camera_util import (
|
|
FOV_to_intrinsics,
|
|
center_looking_at_camera_pose,
|
|
get_circular_camera_poses,
|
|
)
|
|
|
|
|
|
class DataModuleFromConfig(pl.LightningDataModule):
|
|
def __init__(
|
|
self,
|
|
batch_size=8,
|
|
num_workers=4,
|
|
train=None,
|
|
validation=None,
|
|
test=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
|
|
self.batch_size = batch_size
|
|
self.num_workers = num_workers
|
|
|
|
self.dataset_configs = dict()
|
|
if train is not None:
|
|
self.dataset_configs['train'] = train
|
|
if validation is not None:
|
|
self.dataset_configs['validation'] = validation
|
|
if test is not None:
|
|
self.dataset_configs['test'] = test
|
|
|
|
def setup(self, stage):
|
|
|
|
if stage in ['fit']:
|
|
self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def train_dataloader(self):
|
|
|
|
sampler = DistributedSampler(self.datasets['train'])
|
|
return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler)
|
|
|
|
def val_dataloader(self):
|
|
|
|
sampler = DistributedSampler(self.datasets['validation'])
|
|
return wds.WebLoader(self.datasets['validation'], batch_size=1, num_workers=self.num_workers, shuffle=False, sampler=sampler)
|
|
|
|
def test_dataloader(self):
|
|
|
|
return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False)
|
|
|
|
|
|
class ObjaverseData(Dataset):
|
|
def __init__(self,
|
|
root_dir='objaverse/',
|
|
meta_fname='valid_paths.json',
|
|
input_image_dir='rendering_random_32views',
|
|
target_image_dir='rendering_random_32views',
|
|
input_view_num=6,
|
|
target_view_num=4,
|
|
total_view_n=32,
|
|
fov=50,
|
|
camera_rotation=True,
|
|
validation=False,
|
|
):
|
|
self.root_dir = Path(root_dir)
|
|
self.input_image_dir = input_image_dir
|
|
self.target_image_dir = target_image_dir
|
|
|
|
self.input_view_num = input_view_num
|
|
self.target_view_num = target_view_num
|
|
self.total_view_n = total_view_n
|
|
self.fov = fov
|
|
self.camera_rotation = camera_rotation
|
|
|
|
with open(os.path.join(root_dir, meta_fname)) as f:
|
|
filtered_dict = json.load(f)
|
|
paths = filtered_dict['good_objs']
|
|
self.paths = paths
|
|
|
|
self.depth_scale = 6.0
|
|
|
|
total_objects = len(self.paths)
|
|
print('============= length of dataset %d =============' % len(self.paths))
|
|
|
|
def __len__(self):
|
|
return len(self.paths)
|
|
|
|
def load_im(self, path, color):
|
|
'''
|
|
replace background pixel with random color in rendering
|
|
'''
|
|
pil_img = Image.open(path)
|
|
|
|
image = np.asarray(pil_img, dtype=np.float32) / 255.
|
|
alpha = image[:, :, 3:]
|
|
image = image[:, :, :3] * alpha + color * (1 - alpha)
|
|
|
|
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
|
|
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
|
|
return image, alpha
|
|
|
|
def __getitem__(self, index):
|
|
while True:
|
|
input_image_path = os.path.join(self.root_dir, self.input_image_dir, self.paths[index])
|
|
target_image_path = os.path.join(self.root_dir, self.target_image_dir, self.paths[index])
|
|
|
|
indices = np.random.choice(range(self.total_view_n), self.input_view_num + self.target_view_num, replace=False)
|
|
input_indices = indices[:self.input_view_num]
|
|
target_indices = indices[self.input_view_num:]
|
|
|
|
'''background color, default: white'''
|
|
bg_white = [1., 1., 1.]
|
|
bg_black = [0., 0., 0.]
|
|
|
|
image_list = []
|
|
alpha_list = []
|
|
depth_list = []
|
|
normal_list = []
|
|
pose_list = []
|
|
|
|
try:
|
|
input_cameras = np.load(os.path.join(input_image_path, 'cameras.npz'))['cam_poses']
|
|
for idx in input_indices:
|
|
image, alpha = self.load_im(os.path.join(input_image_path, '%03d.png' % idx), bg_white)
|
|
normal, _ = self.load_im(os.path.join(input_image_path, '%03d_normal.png' % idx), bg_black)
|
|
depth = cv2.imread(os.path.join(input_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
|
|
depth = torch.from_numpy(depth).unsqueeze(0)
|
|
pose = input_cameras[idx]
|
|
pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)
|
|
|
|
image_list.append(image)
|
|
alpha_list.append(alpha)
|
|
depth_list.append(depth)
|
|
normal_list.append(normal)
|
|
pose_list.append(pose)
|
|
|
|
target_cameras = np.load(os.path.join(target_image_path, 'cameras.npz'))['cam_poses']
|
|
for idx in target_indices:
|
|
image, alpha = self.load_im(os.path.join(target_image_path, '%03d.png' % idx), bg_white)
|
|
normal, _ = self.load_im(os.path.join(target_image_path, '%03d_normal.png' % idx), bg_black)
|
|
depth = cv2.imread(os.path.join(target_image_path, '%03d_depth.png' % idx), cv2.IMREAD_UNCHANGED) / 255.0 * self.depth_scale
|
|
depth = torch.from_numpy(depth).unsqueeze(0)
|
|
pose = target_cameras[idx]
|
|
pose = np.concatenate([pose, np.array([[0, 0, 0, 1]])], axis=0)
|
|
|
|
image_list.append(image)
|
|
alpha_list.append(alpha)
|
|
depth_list.append(depth)
|
|
normal_list.append(normal)
|
|
pose_list.append(pose)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
index = np.random.randint(0, len(self.paths))
|
|
continue
|
|
|
|
break
|
|
|
|
images = torch.stack(image_list, dim=0).float() # (6+V, 3, H, W)
|
|
alphas = torch.stack(alpha_list, dim=0).float() # (6+V, 1, H, W)
|
|
depths = torch.stack(depth_list, dim=0).float() # (6+V, 1, H, W)
|
|
normals = torch.stack(normal_list, dim=0).float() # (6+V, 3, H, W)
|
|
w2cs = torch.from_numpy(np.stack(pose_list, axis=0)).float() # (6+V, 4, 4)
|
|
c2ws = torch.linalg.inv(w2cs).float()
|
|
|
|
normals = normals * 2.0 - 1.0
|
|
normals = F.normalize(normals, dim=1)
|
|
normals = (normals + 1.0) / 2.0
|
|
normals = torch.lerp(torch.zeros_like(normals), normals, alphas)
|
|
|
|
# random rotation along z axis
|
|
if self.camera_rotation:
|
|
degree = np.random.uniform(0, math.pi * 2)
|
|
rot = torch.tensor([
|
|
[np.cos(degree), -np.sin(degree), 0, 0],
|
|
[np.sin(degree), np.cos(degree), 0, 0],
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 1],
|
|
]).unsqueeze(0).float()
|
|
c2ws = torch.matmul(rot, c2ws)
|
|
|
|
# rotate normals
|
|
N, _, H, W = normals.shape
|
|
normals = normals * 2.0 - 1.0
|
|
normals = torch.matmul(rot[:, :3, :3], normals.view(N, 3, -1)).view(N, 3, H, W)
|
|
normals = F.normalize(normals, dim=1)
|
|
normals = (normals + 1.0) / 2.0
|
|
normals = torch.lerp(torch.zeros_like(normals), normals, alphas)
|
|
|
|
# random scaling
|
|
if np.random.rand() < 0.5:
|
|
scale = np.random.uniform(0.7, 1.1)
|
|
c2ws[:, :3, 3] *= scale
|
|
depths *= scale
|
|
|
|
# instrinsics of perspective cameras
|
|
K = FOV_to_intrinsics(self.fov)
|
|
Ks = K.unsqueeze(0).repeat(self.input_view_num + self.target_view_num, 1, 1).float()
|
|
|
|
data = {
|
|
'input_images': images[:self.input_view_num], # (6, 3, H, W)
|
|
'input_alphas': alphas[:self.input_view_num], # (6, 1, H, W)
|
|
'input_depths': depths[:self.input_view_num], # (6, 1, H, W)
|
|
'input_normals': normals[:self.input_view_num], # (6, 3, H, W)
|
|
'input_c2ws': c2ws[:self.input_view_num], # (6, 4, 4)
|
|
'input_Ks': Ks[:self.input_view_num], # (6, 3, 3)
|
|
|
|
# lrm generator input and supervision
|
|
'target_images': images[self.input_view_num:], # (V, 3, H, W)
|
|
'target_alphas': alphas[self.input_view_num:], # (V, 1, H, W)
|
|
'target_depths': depths[self.input_view_num:], # (V, 1, H, W)
|
|
'target_normals': normals[self.input_view_num:], # (V, 3, H, W)
|
|
'target_c2ws': c2ws[self.input_view_num:], # (V, 4, 4)
|
|
'target_Ks': Ks[self.input_view_num:], # (V, 3, 3)
|
|
}
|
|
return data
|
|
|
|
|
|
class ValidationData(Dataset):
|
|
def __init__(self,
|
|
root_dir='objaverse/',
|
|
input_view_num=6,
|
|
input_image_size=320,
|
|
fov=30,
|
|
):
|
|
self.root_dir = Path(root_dir)
|
|
self.input_view_num = input_view_num
|
|
self.input_image_size = input_image_size
|
|
self.fov = fov
|
|
|
|
self.paths = sorted(os.listdir(self.root_dir))
|
|
print('============= length of dataset %d =============' % len(self.paths))
|
|
|
|
cam_distance = 4.0
|
|
azimuths = np.array([30, 90, 150, 210, 270, 330])
|
|
elevations = np.array([20, -10, 20, -10, 20, -10])
|
|
azimuths = np.deg2rad(azimuths)
|
|
elevations = np.deg2rad(elevations)
|
|
|
|
x = cam_distance * np.cos(elevations) * np.cos(azimuths)
|
|
y = cam_distance * np.cos(elevations) * np.sin(azimuths)
|
|
z = cam_distance * np.sin(elevations)
|
|
|
|
cam_locations = np.stack([x, y, z], axis=-1)
|
|
cam_locations = torch.from_numpy(cam_locations).float()
|
|
c2ws = center_looking_at_camera_pose(cam_locations)
|
|
self.c2ws = c2ws.float()
|
|
self.Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(6, 1, 1).float()
|
|
|
|
render_c2ws = get_circular_camera_poses(M=8, radius=cam_distance, elevation=20.0)
|
|
render_Ks = FOV_to_intrinsics(self.fov).unsqueeze(0).repeat(render_c2ws.shape[0], 1, 1)
|
|
self.render_c2ws = render_c2ws.float()
|
|
self.render_Ks = render_Ks.float()
|
|
|
|
def __len__(self):
|
|
return len(self.paths)
|
|
|
|
def load_im(self, path, color):
|
|
'''
|
|
replace background pixel with random color in rendering
|
|
'''
|
|
pil_img = Image.open(path)
|
|
pil_img = pil_img.resize((self.input_image_size, self.input_image_size), resample=Image.BICUBIC)
|
|
|
|
image = np.asarray(pil_img, dtype=np.float32) / 255.
|
|
if image.shape[-1] == 4:
|
|
alpha = image[:, :, 3:]
|
|
image = image[:, :, :3] * alpha + color * (1 - alpha)
|
|
else:
|
|
alpha = np.ones_like(image[:, :, :1])
|
|
|
|
image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float()
|
|
alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float()
|
|
return image, alpha
|
|
|
|
def __getitem__(self, index):
|
|
# load data
|
|
input_image_path = os.path.join(self.root_dir, self.paths[index])
|
|
|
|
'''background color, default: white'''
|
|
bkg_color = [1.0, 1.0, 1.0]
|
|
|
|
image_list = []
|
|
alpha_list = []
|
|
|
|
for idx in range(self.input_view_num):
|
|
image, alpha = self.load_im(os.path.join(input_image_path, f'{idx:03d}.png'), bkg_color)
|
|
image_list.append(image)
|
|
alpha_list.append(alpha)
|
|
|
|
images = torch.stack(image_list, dim=0).float()
|
|
alphas = torch.stack(alpha_list, dim=0).float()
|
|
|
|
data = {
|
|
'input_images': images,
|
|
'input_alphas': alphas,
|
|
'input_c2ws': self.c2ws,
|
|
'input_Ks': self.Ks,
|
|
|
|
'render_c2ws': self.render_c2ws,
|
|
'render_Ks': self.render_Ks,
|
|
}
|
|
return data
|
|
|