You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
4.2 KiB
126 lines
4.2 KiB
2 years ago
|
from abc import ABC, abstractmethod
|
||
|
from typing import Any, Dict, Optional
|
||
|
|
||
|
import numpy as np
|
||
|
import torch.nn as nn
|
||
|
from torch import torch
|
||
|
|
||
|
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
|
||
|
from shap_e.util.collections import AttrDict
|
||
|
|
||
|
|
||
|
class LatentBottleneck(nn.Module, ABC):
|
||
|
def __init__(self, *, device: torch.device, d_latent: int):
|
||
|
super().__init__()
|
||
|
self.device = device
|
||
|
self.d_latent = d_latent
|
||
|
|
||
|
@abstractmethod
|
||
|
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class LatentWarp(nn.Module, ABC):
|
||
|
def __init__(self, *, device: torch.device):
|
||
|
super().__init__()
|
||
|
self.device = device
|
||
|
|
||
|
@abstractmethod
|
||
|
def warp(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def unwarp(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class IdentityLatentWarp(LatentWarp):
|
||
|
def warp(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
_ = options
|
||
|
return x
|
||
|
|
||
|
def unwarp(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
_ = options
|
||
|
return x
|
||
|
|
||
|
|
||
|
class Tan2LatentWarp(LatentWarp):
|
||
|
def __init__(self, *, coeff1: float = 1.0, device: torch.device):
|
||
|
super().__init__(device=device)
|
||
|
self.coeff1 = coeff1
|
||
|
self.scale = np.tan(np.tan(1.0) * coeff1)
|
||
|
|
||
|
def warp(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
_ = options
|
||
|
return ((x.float().tan() * self.coeff1).tan() / self.scale).to(x.dtype)
|
||
|
|
||
|
def unwarp(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
_ = options
|
||
|
return ((x.float() * self.scale).arctan() / self.coeff1).arctan().to(x.dtype)
|
||
|
|
||
|
|
||
|
class IdentityLatentBottleneck(LatentBottleneck):
|
||
|
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
_ = options
|
||
|
return x
|
||
|
|
||
|
|
||
|
class ClampNoiseBottleneck(LatentBottleneck):
|
||
|
def __init__(self, *, device: torch.device, d_latent: int, noise_scale: float):
|
||
|
super().__init__(device=device, d_latent=d_latent)
|
||
|
self.noise_scale = noise_scale
|
||
|
|
||
|
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
_ = options
|
||
|
x = x.tanh()
|
||
|
if not self.training:
|
||
|
return x
|
||
|
return x + torch.randn_like(x) * self.noise_scale
|
||
|
|
||
|
|
||
|
class ClampDiffusionNoiseBottleneck(LatentBottleneck):
|
||
|
def __init__(
|
||
|
self,
|
||
|
*,
|
||
|
device: torch.device,
|
||
|
d_latent: int,
|
||
|
diffusion: Dict[str, Any],
|
||
|
diffusion_prob: float = 1.0,
|
||
|
):
|
||
|
super().__init__(device=device, d_latent=d_latent)
|
||
|
self.diffusion = diffusion_from_config(diffusion)
|
||
|
self.diffusion_prob = diffusion_prob
|
||
|
|
||
|
def forward(self, x: torch.Tensor, options: Optional[AttrDict] = None) -> AttrDict:
|
||
|
_ = options
|
||
|
x = x.tanh()
|
||
|
if not self.training:
|
||
|
return x
|
||
|
t = torch.randint(low=0, high=self.diffusion.num_timesteps, size=(len(x),), device=x.device)
|
||
|
t = torch.where(
|
||
|
torch.rand(len(x), device=x.device) < self.diffusion_prob, t, torch.zeros_like(t)
|
||
|
)
|
||
|
return self.diffusion.q_sample(x, t)
|
||
|
|
||
|
|
||
|
def latent_bottleneck_from_config(config: Dict[str, Any], device: torch.device, d_latent: int):
|
||
|
name = config.pop("name")
|
||
|
if name == "clamp_noise":
|
||
|
return ClampNoiseBottleneck(**config, device=device, d_latent=d_latent)
|
||
|
elif name == "identity":
|
||
|
return IdentityLatentBottleneck(**config, device=device, d_latent=d_latent)
|
||
|
elif name == "clamp_diffusion_noise":
|
||
|
return ClampDiffusionNoiseBottleneck(**config, device=device, d_latent=d_latent)
|
||
|
else:
|
||
|
raise ValueError(f"unknown latent bottleneck: {name}")
|
||
|
|
||
|
|
||
|
def latent_warp_from_config(config: Dict[str, Any], device: torch.device):
|
||
|
name = config.pop("name")
|
||
|
if name == "identity":
|
||
|
return IdentityLatentWarp(**config, device=device)
|
||
|
elif name == "tan2":
|
||
|
return Tan2LatentWarp(**config, device=device)
|
||
|
else:
|
||
|
raise ValueError(f"unknown latent warping function: {name}")
|