|
|
|
"""
|
|
|
|
Adapted from: https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/download.py
|
|
|
|
"""
|
|
|
|
|
|
|
|
import hashlib
|
|
|
|
import os
|
|
|
|
from functools import lru_cache
|
|
|
|
from typing import Dict, Optional
|
|
|
|
|
|
|
|
import requests
|
|
|
|
import torch
|
|
|
|
import yaml
|
|
|
|
from filelock import FileLock
|
|
|
|
from tqdm.auto import tqdm
|
|
|
|
|
|
|
|
MODEL_PATHS = {
|
|
|
|
"transmitter": "https://openaipublic.azureedge.net/main/shap-e/transmitter.pt",
|
|
|
|
"decoder": "https://openaipublic.azureedge.net/main/shap-e/vector_decoder.pt",
|
|
|
|
"text300M": "https://openaipublic.azureedge.net/main/shap-e/text_cond.pt",
|
|
|
|
"image300M": "https://openaipublic.azureedge.net/main/shap-e/image_cond.pt",
|
|
|
|
}
|
|
|
|
|
|
|
|
CONFIG_PATHS = {
|
|
|
|
"transmitter": "https://openaipublic.azureedge.net/main/shap-e/transmitter_config.yaml",
|
|
|
|
"decoder": "https://openaipublic.azureedge.net/main/shap-e/vector_decoder_config.yaml",
|
|
|
|
"text300M": "https://openaipublic.azureedge.net/main/shap-e/text_cond_config.yaml",
|
|
|
|
"image300M": "https://openaipublic.azureedge.net/main/shap-e/image_cond_config.yaml",
|
|
|
|
"diffusion": "https://openaipublic.azureedge.net/main/shap-e/diffusion_config.yaml",
|
|
|
|
}
|
|
|
|
|
|
|
|
URL_HASHES = {
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/transmitter.pt": "af02a0b85a8abdfb3919584b63c540ba175f6ad4790f574a7fef4617e5acdc3b",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/vector_decoder.pt": "d7e7ebbfe3780499ae89b2da5e7c1354012dba5a6abfe295bed42f25c3be1b98",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/text_cond.pt": "e6b4fa599a7b3c3b16c222d5f5fe56f9db9289ff0b6575fbe5c11bc97106aad4",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/image_cond.pt": "cb8072c64bbbcf6910488814d212227de5db291780d4ea99c6152f9346cf12aa",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/transmitter_config.yaml": "ffe1bcb405104a37d9408391182ab118a4ef313c391e07689684f1f62071605e",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/vector_decoder_config.yaml": "e6d373649f8e24d85925f4674b9ac41c57aba5f60e42cde6d10f87381326365c",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/text_cond_config.yaml": "f290beeea3d3e9ff15db01bde5382b6e549e463060c0744f89c049505be246c1",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/image_cond_config.yaml": "4e0745605a533c543c72add803a78d233e2a6401e0abfa0cad58afb4d74ad0b0",
|
|
|
|
"https://openaipublic.azureedge.net/main/shap-e/diffusion_config.yaml": "efcb2cd7ee545b2d27223979d41857802448143990572a42645cd09c2942ed57",
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
@lru_cache()
|
|
|
|
def default_cache_dir() -> str:
|
|
|
|
return os.path.join(os.path.abspath(os.getcwd()), "shap_e_model_cache")
|
|
|
|
|
|
|
|
|
|
|
|
def fetch_file_cached(
|
|
|
|
url: str, progress: bool = True, cache_dir: Optional[str] = None, chunk_size: int = 4096
|
|
|
|
) -> str:
|
|
|
|
"""
|
|
|
|
Download the file at the given URL into a local file and return the path.
|
|
|
|
If cache_dir is specified, it will be used to download the files.
|
|
|
|
Otherwise, default_cache_dir() is used.
|
|
|
|
"""
|
|
|
|
expected_hash = URL_HASHES[url]
|
|
|
|
|
|
|
|
if cache_dir is None:
|
|
|
|
cache_dir = default_cache_dir()
|
|
|
|
os.makedirs(cache_dir, exist_ok=True)
|
|
|
|
local_path = os.path.join(cache_dir, url.split("/")[-1])
|
|
|
|
if os.path.exists(local_path):
|
|
|
|
check_hash(local_path, expected_hash)
|
|
|
|
return local_path
|
|
|
|
|
|
|
|
response = requests.get(url, stream=True)
|
|
|
|
size = int(response.headers.get("content-length", "0"))
|
|
|
|
with FileLock(local_path + ".lock"):
|
|
|
|
if progress:
|
|
|
|
pbar = tqdm(total=size, unit="iB", unit_scale=True)
|
|
|
|
tmp_path = local_path + ".tmp"
|
|
|
|
with open(tmp_path, "wb") as f:
|
|
|
|
for chunk in response.iter_content(chunk_size):
|
|
|
|
if progress:
|
|
|
|
pbar.update(len(chunk))
|
|
|
|
f.write(chunk)
|
|
|
|
os.rename(tmp_path, local_path)
|
|
|
|
if progress:
|
|
|
|
pbar.close()
|
|
|
|
check_hash(local_path, expected_hash)
|
|
|
|
return local_path
|
|
|
|
|
|
|
|
|
|
|
|
def check_hash(path: str, expected_hash: str):
|
|
|
|
actual_hash = hash_file(path)
|
|
|
|
if actual_hash != expected_hash:
|
|
|
|
raise RuntimeError(
|
|
|
|
f"The file {path} should have hash {expected_hash} but has {actual_hash}. "
|
|
|
|
"Try deleting it and running this call again."
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def hash_file(path: str) -> str:
|
|
|
|
sha256_hash = hashlib.sha256()
|
|
|
|
with open(path, "rb") as file:
|
|
|
|
while True:
|
|
|
|
data = file.read(4096)
|
|
|
|
if not len(data):
|
|
|
|
break
|
|
|
|
sha256_hash.update(data)
|
|
|
|
return sha256_hash.hexdigest()
|
|
|
|
|
|
|
|
|
|
|
|
def load_config(
|
|
|
|
config_name: str,
|
|
|
|
progress: bool = False,
|
|
|
|
cache_dir: Optional[str] = None,
|
|
|
|
chunk_size: int = 4096,
|
|
|
|
):
|
|
|
|
if config_name not in CONFIG_PATHS:
|
|
|
|
raise ValueError(
|
|
|
|
f"Unknown config name {config_name}. Known names are: {CONFIG_PATHS.keys()}."
|
|
|
|
)
|
|
|
|
path = fetch_file_cached(
|
|
|
|
CONFIG_PATHS[config_name], progress=progress, cache_dir=cache_dir, chunk_size=chunk_size
|
|
|
|
)
|
|
|
|
with open(path, "r") as f:
|
|
|
|
return yaml.safe_load(f)
|
|
|
|
|
|
|
|
|
|
|
|
def load_checkpoint(
|
|
|
|
checkpoint_name: str,
|
|
|
|
device: torch.device,
|
|
|
|
progress: bool = True,
|
|
|
|
cache_dir: Optional[str] = None,
|
|
|
|
chunk_size: int = 4096,
|
|
|
|
) -> Dict[str, torch.Tensor]:
|
|
|
|
if checkpoint_name not in MODEL_PATHS:
|
|
|
|
raise ValueError(
|
|
|
|
f"Unknown checkpoint name {checkpoint_name}. Known names are: {MODEL_PATHS.keys()}."
|
|
|
|
)
|
|
|
|
path = fetch_file_cached(
|
|
|
|
MODEL_PATHS[checkpoint_name], progress=progress, cache_dir=cache_dir, chunk_size=chunk_size
|
|
|
|
)
|
|
|
|
return torch.load(path, map_location=device)
|
|
|
|
|
|
|
|
|
|
|
|
def load_model(
|
|
|
|
model_name: str,
|
|
|
|
device: torch.device,
|
|
|
|
**kwargs,
|
|
|
|
) -> Dict[str, torch.Tensor]:
|
|
|
|
from .configs import model_from_config
|
|
|
|
|
|
|
|
model = model_from_config(load_config(model_name, **kwargs), device=device)
|
|
|
|
model.load_state_dict(load_checkpoint(model_name, device=device, **kwargs))
|
|
|
|
model.eval()
|
|
|
|
return model
|