a fork of shap-e for gc

504 lines
18 KiB

2 years ago
import warnings
from abc import ABC, abstractmethod
from functools import partial
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from shap_e.models.nn.camera import DifferentiableCamera, DifferentiableProjectiveCamera
from shap_e.models.nn.meta import subdict
from shap_e.models.nn.utils import to_torch
from shap_e.models.query import Query
from shap_e.models.renderer import Renderer, get_camera_from_batch
from shap_e.models.volume import BoundingBoxVolume, Volume
from shap_e.rendering.blender.constants import BASIC_AMBIENT_COLOR, BASIC_DIFFUSE_COLOR
from shap_e.rendering.mc import marching_cubes
from shap_e.rendering.torch_mesh import TorchMesh
from shap_e.rendering.view_data import ProjectiveCamera
from shap_e.util.collections import AttrDict
from .base import Model
class STFRendererBase(ABC):
@abstractmethod
def get_signed_distance(
self,
position: torch.Tensor,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
pass
@abstractmethod
def get_texture(
self,
position: torch.Tensor,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
pass
class STFRenderer(Renderer, STFRendererBase):
def __init__(
self,
sdf: Model,
tf: Model,
volume: Volume,
grid_size: int,
texture_channels: Sequence[str] = ("R", "G", "B"),
channel_scale: Sequence[float] = (255.0, 255.0, 255.0),
ambient_color: Union[float, Tuple[float]] = BASIC_AMBIENT_COLOR,
diffuse_color: Union[float, Tuple[float]] = BASIC_DIFFUSE_COLOR,
specular_color: Union[float, Tuple[float]] = 0.0,
output_srgb: bool = True,
device: torch.device = torch.device("cuda"),
**kwargs,
):
super().__init__(**kwargs)
assert isinstance(volume, BoundingBoxVolume), "cannot sample points in unknown volume"
self.sdf = sdf
self.tf = tf
self.volume = volume
self.grid_size = grid_size
self.texture_channels = texture_channels
self.channel_scale = to_torch(channel_scale).to(device)
self.ambient_color = ambient_color
self.diffuse_color = diffuse_color
self.specular_color = specular_color
self.output_srgb = output_srgb
self.device = device
self.to(device)
def render_views(
self,
batch: Dict,
params: Optional[Dict] = None,
options: Optional[Dict] = None,
) -> AttrDict:
params = self.update(params)
options = AttrDict() if not options else AttrDict(options)
sdf_fn = partial(self.sdf.forward_batched, params=subdict(params, "sdf"))
tf_fn = partial(self.tf.forward_batched, params=subdict(params, "tf"))
nerstf_fn = None
return render_views_from_stf(
batch,
options,
sdf_fn=sdf_fn,
tf_fn=tf_fn,
nerstf_fn=nerstf_fn,
volume=self.volume,
grid_size=self.grid_size,
channel_scale=self.channel_scale,
texture_channels=self.texture_channels,
ambient_color=self.ambient_color,
diffuse_color=self.diffuse_color,
specular_color=self.specular_color,
output_srgb=self.output_srgb,
device=self.device,
)
def get_signed_distance(
self,
query: Query,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
return self.sdf(
query,
params=subdict(params, "sdf"),
options=options,
).signed_distance
def get_texture(
self,
query: Query,
params: Dict[str, torch.Tensor],
options: AttrDict[str, Any],
) -> torch.Tensor:
return self.tf(
query,
params=subdict(params, "tf"),
options=options,
).channels
def render_views_from_stf(
batch: Dict,
options: AttrDict[str, Any],
*,
sdf_fn: Optional[Callable],
tf_fn: Optional[Callable],
nerstf_fn: Optional[Callable],
volume: BoundingBoxVolume,
grid_size: int,
channel_scale: torch.Tensor,
texture_channels: Sequence[str] = ("R", "G", "B"),
ambient_color: Union[float, Tuple[float]] = 0.0,
diffuse_color: Union[float, Tuple[float]] = 1.0,
specular_color: Union[float, Tuple[float]] = 0.2,
output_srgb: bool = False,
device: torch.device = torch.device("cuda"),
) -> AttrDict:
"""
:param batch: contains either ["poses", "camera"], or ["cameras"]. Can
optionally contain any of ["height", "width", "query_batch_size"]
:param options: controls checkpointing, caching, and rendering
:param sdf_fn: returns [batch_size, query_batch_size, n_output] where
n_output >= 1.
:param tf_fn: returns [batch_size, query_batch_size, n_channels]
:param volume: AABB volume
:param grid_size: SDF sampling resolution
:param texture_channels: what texture to predict
:param channel_scale: how each channel is scaled
:return: at least
channels: [batch_size, len(cameras), height, width, 3]
transmittance: [batch_size, len(cameras), height, width, 1]
aux_losses: AttrDict[str, torch.Tensor]
"""
camera, batch_size, inner_shape = get_camera_from_batch(batch)
inner_batch_size = int(np.prod(inner_shape))
assert camera.width == camera.height, "only square views are supported"
assert camera.x_fov == camera.y_fov, "only square views are supported"
assert isinstance(camera, DifferentiableProjectiveCamera)
device = camera.origin.device
device_type = device.type
TO_CACHE = ["fields", "raw_meshes", "raw_signed_distance", "raw_density", "mesh_mask", "meshes"]
if options.cache is not None and all(key in options.cache for key in TO_CACHE):
fields = options.cache.fields
raw_meshes = options.cache.raw_meshes
raw_signed_distance = options.cache.raw_signed_distance
raw_density = options.cache.raw_density
mesh_mask = options.cache.mesh_mask
else:
query_batch_size = batch.get("query_batch_size", batch.get("ray_batch_size", 4096))
query_points = volume_query_points(volume, grid_size)
fn = nerstf_fn if sdf_fn is None else sdf_fn
sdf_out = fn(
query=Query(position=query_points[None].repeat(batch_size, 1, 1)),
query_batch_size=query_batch_size,
options=options,
)
raw_signed_distance = sdf_out.signed_distance
raw_density = None
if "density" in sdf_out:
raw_density = sdf_out.density
with torch.autocast(device_type, enabled=False):
fields = sdf_out.signed_distance.float()
raw_signed_distance = sdf_out.signed_distance
assert (
len(fields.shape) == 3 and fields.shape[-1] == 1
), f"expected [meta_batch x inner_batch] SDF results, but got {fields.shape}"
fields = fields.reshape(batch_size, *([grid_size] * 3))
# Force a negative border around the SDFs to close off all the models.
full_grid = torch.zeros(
batch_size,
grid_size + 2,
grid_size + 2,
grid_size + 2,
device=fields.device,
dtype=fields.dtype,
)
full_grid.fill_(-1.0)
full_grid[:, 1:-1, 1:-1, 1:-1] = fields
fields = full_grid
raw_meshes = []
mesh_mask = []
for field in fields:
raw_mesh = marching_cubes(field, volume.bbox_min, volume.bbox_max - volume.bbox_min)
if len(raw_mesh.faces) == 0:
# DDP deadlocks when there are unused parameters on some ranks
# and not others, so we make sure the field is a dependency in
# the graph regardless of empty meshes.
vertex_dependency = field.mean()
raw_mesh = TorchMesh(
verts=torch.zeros(3, 3, device=device) + vertex_dependency,
faces=torch.tensor([[0, 1, 2]], dtype=torch.long, device=device),
)
# Make sure we only feed back zero gradients to the field
# by masking out the final renderings of this mesh.
mesh_mask.append(False)
else:
mesh_mask.append(True)
raw_meshes.append(raw_mesh)
mesh_mask = torch.tensor(mesh_mask, device=device)
max_vertices = max(len(m.verts) for m in raw_meshes)
fn = nerstf_fn if tf_fn is None else tf_fn
tf_out = fn(
query=Query(
position=torch.stack(
[m.verts[torch.arange(0, max_vertices) % len(m.verts)] for m in raw_meshes],
dim=0,
)
),
query_batch_size=query_batch_size,
options=options,
)
if "cache" in options:
options.cache.fields = fields
options.cache.raw_meshes = raw_meshes
options.cache.raw_signed_distance = raw_signed_distance
options.cache.raw_density = raw_density
options.cache.mesh_mask = mesh_mask
if output_srgb:
tf_out.channels = _convert_srgb_to_linear(tf_out.channels)
args = dict(
options=options,
texture_channels=texture_channels,
ambient_color=ambient_color,
diffuse_color=diffuse_color,
specular_color=specular_color,
camera=camera,
batch_size=batch_size,
inner_batch_size=inner_batch_size,
inner_shape=inner_shape,
raw_meshes=raw_meshes,
tf_out=tf_out,
)
try:
out = _render_with_pytorch3d(**args)
except ModuleNotFoundError as exc:
warnings.warn(f"exception rendering with PyTorch3D: {exc}")
warnings.warn(
"falling back on native PyTorch renderer, which does not support full gradients"
)
out = _render_with_raycast(**args)
# Apply mask to prevent gradients for empty meshes.
reshaped_mask = mesh_mask.view([-1] + [1] * (len(out.channels.shape) - 1))
out.channels = torch.where(reshaped_mask, out.channels, torch.zeros_like(out.channels))
out.transmittance = torch.where(
reshaped_mask, out.transmittance, torch.ones_like(out.transmittance)
)
if output_srgb:
out.channels = _convert_linear_to_srgb(out.channels)
out.channels = out.channels * (1 - out.transmittance) * channel_scale.view(-1)
# This might be useful information to have downstream
out.raw_meshes = raw_meshes
out.fields = fields
out.mesh_mask = mesh_mask
out.raw_signed_distance = raw_signed_distance
out.aux_losses = AttrDict(cross_entropy=cross_entropy_sdf_loss(fields))
if raw_density is not None:
out.raw_density = raw_density
return out
def _render_with_pytorch3d(
options: AttrDict,
texture_channels: Sequence[str],
ambient_color: Union[float, Tuple[float]],
diffuse_color: Union[float, Tuple[float]],
specular_color: Union[float, Tuple[float]],
camera: DifferentiableCamera,
batch_size: int,
inner_shape: Sequence[int],
inner_batch_size: int,
raw_meshes: List[TorchMesh],
tf_out: AttrDict,
):
# Lazy import because pytorch3d is installed lazily.
from shap_e.rendering.pytorch3d_util import (
blender_uniform_lights,
convert_cameras_torch,
convert_meshes,
render_images,
)
n_channels = len(texture_channels)
device = camera.origin.device
device_type = device.type
with torch.autocast(device_type, enabled=False):
textures = tf_out.channels.float()
assert len(textures.shape) == 3 and textures.shape[-1] == len(
texture_channels
), f"expected [meta_batch x inner_batch x texture_channels] field results, but got {textures.shape}"
for m, texture in zip(raw_meshes, textures):
texture = texture[: len(m.verts)]
m.vertex_channels = {name: ch for name, ch in zip(texture_channels, texture.unbind(-1))}
meshes = convert_meshes(raw_meshes)
lights = blender_uniform_lights(
batch_size,
device,
ambient_color=ambient_color,
diffuse_color=diffuse_color,
specular_color=specular_color,
)
# Separate camera intrinsics for each view, so that we can
# create a new camera for each batch of views.
cam_shape = [batch_size, inner_batch_size, -1]
position = camera.origin.reshape(cam_shape)
x = camera.x.reshape(cam_shape)
y = camera.y.reshape(cam_shape)
z = camera.z.reshape(cam_shape)
results = []
for i in range(inner_batch_size):
sub_cams = convert_cameras_torch(
position[:, i], x[:, i], y[:, i], z[:, i], fov=camera.x_fov
)
imgs = render_images(
camera.width,
meshes,
sub_cams,
lights,
use_checkpoint=options.checkpoint_render,
**options.get("render_options", {}),
)
results.append(imgs)
views = torch.stack(results, dim=1)
views = views.view(batch_size, *inner_shape, camera.height, camera.width, n_channels + 1)
out = AttrDict(
channels=views[..., :-1], # [batch_size, *inner_shape, height, width, n_channels]
transmittance=1 - views[..., -1:], # [batch_size, *inner_shape, height, width, 1]
meshes=meshes,
)
return out
def _render_with_raycast(
options: AttrDict,
texture_channels: Sequence[str],
ambient_color: Union[float, Tuple[float]],
diffuse_color: Union[float, Tuple[float]],
specular_color: Union[float, Tuple[float]],
camera: DifferentiableCamera,
batch_size: int,
inner_shape: Sequence[int],
inner_batch_size: int,
raw_meshes: List[TorchMesh],
tf_out: AttrDict,
):
assert np.mean(np.array(specular_color)) == 0
from shap_e.rendering.raycast.render import render_diffuse_mesh
from shap_e.rendering.raycast.types import TriMesh as TorchTriMesh
device = camera.origin.device
device_type = device.type
cam_shape = [batch_size, inner_batch_size, -1]
origin = camera.origin.reshape(cam_shape)
x = camera.x.reshape(cam_shape)
y = camera.y.reshape(cam_shape)
z = camera.z.reshape(cam_shape)
with torch.autocast(device_type, enabled=False):
all_meshes = []
for i, mesh in enumerate(raw_meshes):
all_meshes.append(
TorchTriMesh(
faces=mesh.faces.long(),
vertices=mesh.verts.float(),
vertex_colors=tf_out.channels[i, : len(mesh.verts)].float(),
)
)
all_images = []
for i, mesh in enumerate(all_meshes):
for j in range(inner_batch_size):
all_images.append(
render_diffuse_mesh(
camera=ProjectiveCamera(
origin=origin[i, j].detach().cpu().numpy(),
x=x[i, j].detach().cpu().numpy(),
y=y[i, j].detach().cpu().numpy(),
z=z[i, j].detach().cpu().numpy(),
width=camera.width,
height=camera.height,
x_fov=camera.x_fov,
y_fov=camera.y_fov,
),
mesh=mesh,
diffuse=float(np.array(diffuse_color).mean()),
ambient=float(np.array(ambient_color).mean()),
ray_batch_size=16, # low memory usage
checkpoint=options.checkpoint_render,
)
)
n_channels = len(texture_channels)
views = torch.stack(all_images).view(
batch_size, *inner_shape, camera.height, camera.width, n_channels + 1
)
return AttrDict(
channels=views[..., :-1], # [batch_size, *inner_shape, height, width, n_channels]
transmittance=1 - views[..., -1:], # [batch_size, *inner_shape, height, width, 1]
meshes=all_meshes,
)
def _convert_srgb_to_linear(u: torch.Tensor) -> torch.Tensor:
return torch.where(u <= 0.04045, u / 12.92, ((u + 0.055) / 1.055) ** 2.4)
def _convert_linear_to_srgb(u: torch.Tensor) -> torch.Tensor:
return torch.where(u <= 0.0031308, 12.92 * u, 1.055 * (u ** (1 / 2.4)) - 0.055)
def cross_entropy_sdf_loss(fields: torch.Tensor):
logits = F.logsigmoid(fields)
signs = (fields > 0).float()
losses = []
for dim in range(1, 4):
n = logits.shape[dim]
for (t_start, t_end, p_start, p_end) in [(0, -1, 1, n), (1, n, 0, -1)]:
targets = slice_fields(signs, dim, t_start, t_end)
preds = slice_fields(logits, dim, p_start, p_end)
losses.append(
F.binary_cross_entropy_with_logits(preds, targets, reduction="none")
.flatten(1)
.mean()
)
return torch.stack(losses, dim=-1).sum()
def slice_fields(fields: torch.Tensor, dim: int, start: int, end: int):
if dim == 1:
return fields[:, start:end]
elif dim == 2:
return fields[:, :, start:end]
elif dim == 3:
return fields[:, :, :, start:end]
else:
raise ValueError(f"cannot slice dimension {dim}")
def volume_query_points(
volume: Volume,
grid_size: int,
):
assert isinstance(volume, BoundingBoxVolume)
indices = torch.arange(grid_size**3, device=volume.bbox_min.device)
zs = indices % grid_size
ys = torch.div(indices, grid_size, rounding_mode="trunc") % grid_size
xs = torch.div(indices, grid_size**2, rounding_mode="trunc") % grid_size
combined = torch.stack([xs, ys, zs], dim=1)
return (combined.float() / (grid_size - 1)) * (
volume.bbox_max - volume.bbox_min
) + volume.bbox_min