You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
51 lines
1.7 KiB
51 lines
1.7 KiB
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, set_seed
|
|
import random
|
|
import torch
|
|
|
|
class TextGenerator:
|
|
def __init__(self):
|
|
self.model = None
|
|
self.tokenizer = None
|
|
#self.load_models()
|
|
|
|
def load_models(self):
|
|
print('Loading Models...')
|
|
self.tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
|
|
self.model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
|
|
print('Models Loaded!')
|
|
|
|
def generate_text(self):
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
"microsoft/Phi-3-mini-4k-instruct",
|
|
device_map="cuda",
|
|
torch_dtype="auto",
|
|
trust_remote_code=True,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
|
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful AI assistant, that generates two nouns and returns one sentence in the format of: a (noun) with a (noun).\n You can descirbe a random object typically found in a bin"},
|
|
{"role": "user", "content": "Can you provide me with a sentence"},
|
|
]
|
|
|
|
pipe = pipeline(
|
|
"text-generation",
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
)
|
|
|
|
generation_args = {
|
|
"max_new_tokens": 50, # Reduced to focus on concise output
|
|
"return_full_text": False,
|
|
"temperature": 0.7, # Adjusted for more randomness
|
|
"do_sample": True,
|
|
"top_k": 100, # Top-k sampling
|
|
"top_p": 1, # Nucleus sampling
|
|
}
|
|
|
|
output = pipe(messages, **generation_args)
|
|
return output[0]['generated_text']
|
|
|
|
|
|
|