You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
426 lines
15 KiB
426 lines
15 KiB
from abc import abstractmethod
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from PIL import Image
|
|
from torch import torch
|
|
|
|
from shap_e.models.generation.perceiver import SimplePerceiver
|
|
from shap_e.models.generation.transformer import Transformer
|
|
from shap_e.models.nn.encoding import PosEmbLinear
|
|
from shap_e.rendering.view_data import ProjectiveCamera
|
|
from shap_e.util.collections import AttrDict
|
|
|
|
from .base import VectorEncoder
|
|
from .channels_encoder import DatasetIterator, sample_pcl_fps
|
|
|
|
|
|
class PointCloudTransformerEncoder(VectorEncoder):
|
|
"""
|
|
Encode point clouds using a transformer model with an extra output
|
|
token used to extract a latent vector.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
param_shapes: Dict[str, Tuple[int]],
|
|
params_proj: Dict[str, Any],
|
|
latent_bottleneck: Optional[Dict[str, Any]] = None,
|
|
d_latent: int = 512,
|
|
latent_ctx: int = 1,
|
|
input_channels: int = 6,
|
|
n_ctx: int = 1024,
|
|
width: int = 512,
|
|
layers: int = 12,
|
|
heads: int = 8,
|
|
init_scale: float = 0.25,
|
|
pos_emb: Optional[str] = None,
|
|
):
|
|
super().__init__(
|
|
device=device,
|
|
param_shapes=param_shapes,
|
|
params_proj=params_proj,
|
|
latent_bottleneck=latent_bottleneck,
|
|
d_latent=d_latent,
|
|
)
|
|
self.input_channels = input_channels
|
|
self.n_ctx = n_ctx
|
|
self.latent_ctx = latent_ctx
|
|
|
|
assert d_latent % latent_ctx == 0
|
|
|
|
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
self.backbone = Transformer(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=n_ctx + latent_ctx,
|
|
width=width,
|
|
layers=layers,
|
|
heads=heads,
|
|
init_scale=init_scale,
|
|
)
|
|
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
self.register_parameter(
|
|
"output_tokens",
|
|
nn.Parameter(torch.randn(latent_ctx, width, device=device, dtype=dtype)),
|
|
)
|
|
|
|
self.input_proj = PosEmbLinear(pos_emb, input_channels, width, device=device, dtype=dtype)
|
|
self.output_proj = nn.Linear(width, d_latent // latent_ctx, device=device, dtype=dtype)
|
|
|
|
def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
|
|
_ = options
|
|
points = batch.points.permute(0, 2, 1) # NCL -> NLC
|
|
h = self.input_proj(points)
|
|
h = torch.cat([h, self.output_tokens[None].repeat(len(h), 1, 1)], dim=1)
|
|
h = self.ln_pre(h)
|
|
h = self.backbone(h)
|
|
h = self.ln_post(h)
|
|
h = h[:, self.n_ctx :]
|
|
h = self.output_proj(h).flatten(1)
|
|
return h
|
|
|
|
|
|
class PerceiverEncoder(VectorEncoder):
|
|
"""
|
|
Encode point clouds using a perceiver model with an extra output
|
|
token used to extract a latent vector.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
device: torch.device,
|
|
dtype: torch.dtype,
|
|
param_shapes: Dict[str, Tuple[int]],
|
|
params_proj: Dict[str, Any],
|
|
latent_bottleneck: Optional[Dict[str, Any]] = None,
|
|
d_latent: int = 512,
|
|
latent_ctx: int = 1,
|
|
width: int = 512,
|
|
layers: int = 12,
|
|
xattn_layers: int = 1,
|
|
heads: int = 8,
|
|
init_scale: float = 0.25,
|
|
# Training hparams
|
|
inner_batch_size: int = 1,
|
|
data_ctx: int = 1,
|
|
min_unrolls: int,
|
|
max_unrolls: int,
|
|
):
|
|
super().__init__(
|
|
device=device,
|
|
param_shapes=param_shapes,
|
|
params_proj=params_proj,
|
|
latent_bottleneck=latent_bottleneck,
|
|
d_latent=d_latent,
|
|
)
|
|
self.width = width
|
|
self.device = device
|
|
self.dtype = dtype
|
|
self.latent_ctx = latent_ctx
|
|
|
|
self.inner_batch_size = inner_batch_size
|
|
self.data_ctx = data_ctx
|
|
self.min_unrolls = min_unrolls
|
|
self.max_unrolls = max_unrolls
|
|
|
|
self.encoder = SimplePerceiver(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=self.data_ctx + self.latent_ctx,
|
|
n_data=self.inner_batch_size,
|
|
width=width,
|
|
layers=xattn_layers,
|
|
heads=heads,
|
|
init_scale=init_scale,
|
|
)
|
|
self.processor = Transformer(
|
|
device=device,
|
|
dtype=dtype,
|
|
n_ctx=self.data_ctx + self.latent_ctx,
|
|
layers=layers - xattn_layers,
|
|
width=width,
|
|
heads=heads,
|
|
init_scale=init_scale,
|
|
)
|
|
self.ln_pre = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
self.ln_post = nn.LayerNorm(width, device=device, dtype=dtype)
|
|
self.register_parameter(
|
|
"output_tokens",
|
|
nn.Parameter(torch.randn(self.latent_ctx, width, device=device, dtype=dtype)),
|
|
)
|
|
self.output_proj = nn.Linear(width, d_latent // self.latent_ctx, device=device, dtype=dtype)
|
|
|
|
@abstractmethod
|
|
def get_h_and_iterator(
|
|
self, batch: AttrDict, options: Optional[AttrDict] = None
|
|
) -> Tuple[torch.Tensor, Iterable]:
|
|
"""
|
|
:return: a tuple of (
|
|
the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
|
|
an iterator over the given data
|
|
)
|
|
"""
|
|
|
|
def encode_to_vector(self, batch: AttrDict, options: Optional[AttrDict] = None) -> torch.Tensor:
|
|
h, it = self.get_h_and_iterator(batch, options=options)
|
|
n_unrolls = self.get_n_unrolls()
|
|
|
|
for _ in range(n_unrolls):
|
|
data = next(it)
|
|
h = self.encoder(h, data)
|
|
h = self.processor(h)
|
|
|
|
h = self.output_proj(self.ln_post(h[:, -self.latent_ctx :]))
|
|
return h.flatten(1)
|
|
|
|
def get_n_unrolls(self):
|
|
if self.training:
|
|
n_unrolls = torch.randint(
|
|
self.min_unrolls, self.max_unrolls + 1, size=(), device=self.device
|
|
)
|
|
dist.broadcast(n_unrolls, 0)
|
|
n_unrolls = n_unrolls.item()
|
|
else:
|
|
n_unrolls = self.max_unrolls
|
|
return n_unrolls
|
|
|
|
|
|
class PointCloudPerceiverEncoder(PerceiverEncoder):
|
|
"""
|
|
Encode point clouds using a transformer model with an extra output
|
|
token used to extract a latent vector.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
cross_attention_dataset: str = "pcl",
|
|
fps_method: str = "fps",
|
|
# point cloud hyperparameters
|
|
input_channels: int = 6,
|
|
pos_emb: Optional[str] = None,
|
|
# multiview hyperparameters
|
|
image_size: int = 256,
|
|
patch_size: int = 32,
|
|
pose_dropout: float = 0.0,
|
|
use_depth: bool = False,
|
|
max_depth: float = 5.0,
|
|
# other hyperparameters
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
assert cross_attention_dataset in ("pcl", "multiview")
|
|
assert fps_method in ("fps", "first")
|
|
self.cross_attention_dataset = cross_attention_dataset
|
|
self.fps_method = fps_method
|
|
self.input_channels = input_channels
|
|
self.input_proj = PosEmbLinear(
|
|
pos_emb, input_channels, self.width, device=self.device, dtype=self.dtype
|
|
)
|
|
if self.cross_attention_dataset == "multiview":
|
|
self.image_size = image_size
|
|
self.patch_size = patch_size
|
|
self.pose_dropout = pose_dropout
|
|
self.use_depth = use_depth
|
|
self.max_depth = max_depth
|
|
pos_ctx = (image_size // patch_size) ** 2
|
|
self.register_parameter(
|
|
"pos_emb",
|
|
nn.Parameter(
|
|
torch.randn(
|
|
pos_ctx * self.inner_batch_size,
|
|
self.width,
|
|
device=self.device,
|
|
dtype=self.dtype,
|
|
)
|
|
),
|
|
)
|
|
self.patch_emb = nn.Conv2d(
|
|
in_channels=3 if not use_depth else 4,
|
|
out_channels=self.width,
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
device=self.device,
|
|
dtype=self.dtype,
|
|
)
|
|
self.camera_emb = nn.Sequential(
|
|
nn.Linear(
|
|
3 * 4 + 1, self.width, device=self.device, dtype=self.dtype
|
|
), # input size is for origin+x+y+z+fov
|
|
nn.GELU(),
|
|
nn.Linear(self.width, 2 * self.width, device=self.device, dtype=self.dtype),
|
|
)
|
|
|
|
def get_h_and_iterator(
|
|
self, batch: AttrDict, options: Optional[AttrDict] = None
|
|
) -> Tuple[torch.Tensor, Iterable]:
|
|
"""
|
|
:return: a tuple of (
|
|
the initial output tokens of size [batch_size, data_ctx + latent_ctx, width],
|
|
an iterator over the given data
|
|
)
|
|
"""
|
|
options = AttrDict() if options is None else options
|
|
|
|
# Build the initial query embeddings
|
|
points = batch.points.permute(0, 2, 1) # NCL -> NLC
|
|
fps_samples = self.sample_pcl_fps(points)
|
|
batch_size = points.shape[0]
|
|
data_tokens = self.input_proj(fps_samples)
|
|
latent_tokens = self.output_tokens.unsqueeze(0).repeat(batch_size, 1, 1)
|
|
h = self.ln_pre(torch.cat([data_tokens, latent_tokens], dim=1))
|
|
assert h.shape == (batch_size, self.data_ctx + self.latent_ctx, self.width)
|
|
|
|
# Build the dataset embedding iterator
|
|
dataset_fn = {
|
|
"pcl": self.get_pcl_dataset,
|
|
"multiview": self.get_multiview_dataset,
|
|
}[self.cross_attention_dataset]
|
|
it = dataset_fn(batch, options=options)
|
|
|
|
return h, it
|
|
|
|
def sample_pcl_fps(self, points: torch.Tensor) -> torch.Tensor:
|
|
return sample_pcl_fps(points, data_ctx=self.data_ctx, method=self.fps_method)
|
|
|
|
def get_pcl_dataset(
|
|
self, batch: AttrDict, options: Optional[AttrDict[str, Any]] = None
|
|
) -> Iterable:
|
|
_ = options
|
|
dataset_emb = self.input_proj(batch.points.permute(0, 2, 1)) # NCL -> NLC
|
|
assert dataset_emb.shape[1] >= self.inner_batch_size
|
|
return iter(DatasetIterator(dataset_emb, batch_size=self.inner_batch_size))
|
|
|
|
def get_multiview_dataset(
|
|
self, batch: AttrDict, options: Optional[AttrDict] = None
|
|
) -> Iterable:
|
|
_ = options
|
|
|
|
dataset_emb = self.encode_views(batch)
|
|
batch_size, num_views, n_patches, width = dataset_emb.shape
|
|
|
|
assert num_views >= self.inner_batch_size
|
|
|
|
it = iter(DatasetIterator(dataset_emb, batch_size=self.inner_batch_size))
|
|
|
|
def gen():
|
|
while True:
|
|
examples = next(it)
|
|
assert examples.shape == (batch_size, self.inner_batch_size, n_patches, self.width)
|
|
views = examples.reshape(batch_size, -1, width) + self.pos_emb
|
|
yield views
|
|
|
|
return gen()
|
|
|
|
def encode_views(self, batch: AttrDict) -> torch.Tensor:
|
|
"""
|
|
:return: [batch_size, num_views, n_patches, width]
|
|
"""
|
|
all_views = self.views_to_tensor(batch.views).to(self.device)
|
|
if self.use_depth:
|
|
all_views = torch.cat([all_views, self.depths_to_tensor(batch.depths)], dim=2)
|
|
all_cameras = self.cameras_to_tensor(batch.cameras).to(self.device)
|
|
|
|
batch_size, num_views, _, _, _ = all_views.shape
|
|
|
|
views_proj = self.patch_emb(
|
|
all_views.reshape([batch_size * num_views, *all_views.shape[2:]])
|
|
)
|
|
views_proj = (
|
|
views_proj.reshape([batch_size, num_views, self.width, -1])
|
|
.permute(0, 1, 3, 2)
|
|
.contiguous()
|
|
) # [batch_size x num_views x n_patches x width]
|
|
|
|
# [batch_size, num_views, 1, 2 * width]
|
|
camera_proj = self.camera_emb(all_cameras).reshape(
|
|
[batch_size, num_views, 1, self.width * 2]
|
|
)
|
|
pose_dropout = self.pose_dropout if self.training else 0.0
|
|
mask = torch.rand(batch_size, 1, 1, 1, device=views_proj.device) >= pose_dropout
|
|
camera_proj = torch.where(mask, camera_proj, torch.zeros_like(camera_proj))
|
|
scale, shift = camera_proj.chunk(2, dim=3)
|
|
views_proj = views_proj * (scale + 1.0) + shift
|
|
return views_proj
|
|
|
|
def views_to_tensor(self, views: Union[torch.Tensor, List[List[Image.Image]]]) -> torch.Tensor:
|
|
"""
|
|
Returns a [batch x num_views x 3 x size x size] tensor in the range [-1, 1].
|
|
"""
|
|
if isinstance(views, torch.Tensor):
|
|
return views
|
|
|
|
tensor_batch = []
|
|
num_views = len(views[0])
|
|
for inner_list in views:
|
|
assert len(inner_list) == num_views
|
|
inner_batch = []
|
|
for img in inner_list:
|
|
img = img.resize((self.image_size,) * 2).convert("RGB")
|
|
inner_batch.append(
|
|
torch.from_numpy(np.array(img)).to(device=self.device, dtype=torch.float32)
|
|
/ 127.5
|
|
- 1
|
|
)
|
|
tensor_batch.append(torch.stack(inner_batch, dim=0))
|
|
return torch.stack(tensor_batch, dim=0).permute(0, 1, 4, 2, 3)
|
|
|
|
def depths_to_tensor(
|
|
self, depths: Union[torch.Tensor, List[List[Image.Image]]]
|
|
) -> torch.Tensor:
|
|
"""
|
|
Returns a [batch x num_views x 1 x size x size] tensor in the range [-1, 1].
|
|
"""
|
|
if isinstance(depths, torch.Tensor):
|
|
return depths
|
|
|
|
tensor_batch = []
|
|
num_views = len(depths[0])
|
|
for inner_list in depths:
|
|
assert len(inner_list) == num_views
|
|
inner_batch = []
|
|
for arr in inner_list:
|
|
tensor = torch.from_numpy(arr).clamp(max=self.max_depth) / self.max_depth
|
|
tensor = tensor * 2 - 1
|
|
tensor = F.interpolate(
|
|
tensor[None, None],
|
|
(self.image_size,) * 2,
|
|
mode="nearest",
|
|
)
|
|
inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
|
|
tensor_batch.append(torch.cat(inner_batch, dim=0))
|
|
return torch.stack(tensor_batch, dim=0)
|
|
|
|
def cameras_to_tensor(
|
|
self, cameras: Union[torch.Tensor, List[List[ProjectiveCamera]]]
|
|
) -> torch.Tensor:
|
|
"""
|
|
Returns a [batch x num_views x 3*4+1] tensor of camera information.
|
|
"""
|
|
if isinstance(cameras, torch.Tensor):
|
|
return cameras
|
|
outer_batch = []
|
|
for inner_list in cameras:
|
|
inner_batch = []
|
|
for camera in inner_list:
|
|
inner_batch.append(
|
|
np.array(
|
|
[
|
|
*camera.x,
|
|
*camera.y,
|
|
*camera.z,
|
|
*camera.origin,
|
|
camera.x_fov,
|
|
]
|
|
)
|
|
)
|
|
outer_batch.append(np.stack(inner_batch, axis=0))
|
|
return torch.from_numpy(np.stack(outer_batch, axis=0)).float()
|
|
|