You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
3.1 KiB
121 lines
3.1 KiB
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "964ccced",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import torch\n",
|
|
"\n",
|
|
"from shap_e.diffusion.sample import sample_latents\n",
|
|
"from shap_e.diffusion.gaussian_diffusion import diffusion_from_config\n",
|
|
"from shap_e.models.download import load_model, load_config\n",
|
|
"from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, gif_widget"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "8eed3a76",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "2d922637",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"xm = load_model('transmitter', device=device)\n",
|
|
"model = load_model('text300M', device=device)\n",
|
|
"diffusion = diffusion_from_config(load_config('diffusion'))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "53d329d0",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"batch_size = 4\n",
|
|
"guidance_scale = 15.0\n",
|
|
"prompt = \"a shark\"\n",
|
|
"\n",
|
|
"latents = sample_latents(\n",
|
|
" batch_size=batch_size,\n",
|
|
" model=model,\n",
|
|
" diffusion=diffusion,\n",
|
|
" guidance_scale=guidance_scale,\n",
|
|
" model_kwargs=dict(texts=[prompt] * batch_size),\n",
|
|
" progress=True,\n",
|
|
" clip_denoised=True,\n",
|
|
" use_fp16=True,\n",
|
|
" use_karras=True,\n",
|
|
" karras_steps=64,\n",
|
|
" sigma_min=1e-3,\n",
|
|
" sigma_max=160,\n",
|
|
" s_churn=0,\n",
|
|
")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "633da2ec",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"render_mode = 'nerf' # you can change this to 'stf'\n",
|
|
"size = 64 # this is the size of the renders; higher values take longer to render.\n",
|
|
"\n",
|
|
"cameras = create_pan_cameras(size, device)\n",
|
|
"for i, latent in enumerate(latents):\n",
|
|
" images = decode_latent_images(xm, latent, cameras, rendering_mode=render_mode)\n",
|
|
" display(gif_widget(images))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "85a4dce4",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Example of saving the latents as meshes.\n",
|
|
"from shap_e.util.notebooks import decode_latent_mesh\n",
|
|
"\n",
|
|
"for i, latent in enumerate(latents):\n",
|
|
" with open(f'example_mesh_{i}.ply', 'wb') as f:\n",
|
|
" decode_latent_mesh(xm, latent).tri_mesh().write_ply(f)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.9"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|
|
|