a fork of shap-e for gc
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

191 lines
4.9 KiB

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "964ccced",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"\n",
"from shap_e.diffusion.sample import sample_latents\n",
"from shap_e.diffusion.gaussian_diffusion import diffusion_from_config\n",
"from shap_e.models.download import load_model, load_config\n",
"from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, gif_widget"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8eed3a76",
"metadata": {},
"outputs": [],
"source": [
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4127249f-da93-4da9-a15e-47fc1d918758",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"NVIDIA GeForce RTX 3090\n"
]
}
],
"source": [
"print(torch.cuda.get_device_name())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2d922637",
"metadata": {},
"outputs": [],
"source": [
"xm = load_model('transmitter', device=device)\n",
"model = load_model('text300M', device=device)\n",
"diffusion = diffusion_from_config(load_config('diffusion'))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "53d329d0",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "299c91406ddc4a368d1c80ed81c20a84",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/64 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"batch_size = 1\n",
"guidance_scale = 30.0\n",
"prompt = \"road sign\"\n",
"\n",
"latents = sample_latents(\n",
" batch_size=batch_size,\n",
" model=model,\n",
" diffusion=diffusion,\n",
" guidance_scale=guidance_scale,\n",
" model_kwargs=dict(texts=[prompt] * batch_size),\n",
" progress=True,\n",
" clip_denoised=True,\n",
" use_fp16=True,\n",
" use_karras=True,\n",
" karras_steps=64,\n",
" sigma_min=1e-3,\n",
" sigma_max=160,\n",
" s_churn=0,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "633da2ec",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c8b8946a49847dd9aa5376f9568775f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HTML(value='<img src=\"…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"render_mode = 'nerf' # you can change this to 'stf'\n",
"size = 64 # this is the size of the renders; higher values take longer to render.\n",
"\n",
"cameras = create_pan_cameras(size, device)\n",
"for i, latent in enumerate(latents):\n",
" images = decode_latent_images(xm, latent, cameras, rendering_mode=render_mode)\n",
" display(gif_widget(images))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "85a4dce4",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cailean/shap-e/shap_e/models/stf/renderer.py:286: UserWarning: exception rendering with PyTorch3D: No module named 'pytorch3d'\n",
" warnings.warn(f\"exception rendering with PyTorch3D: {exc}\")\n",
"/home/cailean/shap-e/shap_e/models/stf/renderer.py:287: UserWarning: falling back on native PyTorch renderer, which does not support full gradients\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Example of saving the latents as meshes.\n",
"from shap_e.util.notebooks import decode_latent_mesh\n",
"\n",
"for i, latent in enumerate(latents):\n",
" t = decode_latent_mesh(xm, latent).tri_mesh()\n",
" with open(f'road_example_mesh_{i}.ply', 'wb') as f:\n",
" t.write_ply(f)\n",
" with open(f'road_example_mesh_{i}.obj', 'w') as f:\n",
" t.write_obj(f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71b5ace4-b449-4a7e-b4e3-66ee6a5d03c3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}