bluestyle97
10 months ago
1 changed files with 346 additions and 0 deletions
@ -0,0 +1,346 @@ |
|||
import os |
|||
import argparse |
|||
import imageio |
|||
import time |
|||
import mcubes |
|||
import cv2 |
|||
import numpy as np |
|||
import torch |
|||
import trimesh |
|||
import rembg |
|||
from PIL import Image |
|||
from torchvision.transforms import v2 |
|||
from pytorch_lightning import seed_everything |
|||
from omegaconf import OmegaConf |
|||
from einops import rearrange, repeat |
|||
from tqdm import tqdm |
|||
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler |
|||
|
|||
from src.utils.train_util import instantiate_from_config |
|||
from src.utils.camera_util import ( |
|||
FOV_to_intrinsics, |
|||
get_zero123plus_input_cameras, |
|||
get_circular_camera_poses, |
|||
) |
|||
from src.utils.mesh_util import save_obj |
|||
from src.utils.infer_util import remove_background, resize_foreground, images_to_video |
|||
|
|||
import tempfile |
|||
from functools import partial |
|||
|
|||
|
|||
def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): |
|||
""" |
|||
Get the rendering camera parameters. |
|||
""" |
|||
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) |
|||
if is_flexicubes: |
|||
cameras = torch.linalg.inv(c2ws) |
|||
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) |
|||
else: |
|||
extrinsics = c2ws.flatten(-2) |
|||
intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) |
|||
cameras = torch.cat([extrinsics, intrinsics], dim=-1) |
|||
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) |
|||
return cameras |
|||
|
|||
|
|||
def images_to_video(images, output_path, fps=30): |
|||
# images: (N, C, H, W) |
|||
os.makedirs(os.path.dirname(output_path), exist_ok=True) |
|||
frames = [] |
|||
for i in range(images.shape[0]): |
|||
frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) |
|||
assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ |
|||
f"Frame shape mismatch: {frame.shape} vs {images.shape}" |
|||
assert frame.min() >= 0 and frame.max() <= 255, \ |
|||
f"Frame value out of range: {frame.min()} ~ {frame.max()}" |
|||
frames.append(frame) |
|||
imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') |
|||
|
|||
|
|||
############################################################################### |
|||
# Configuration. |
|||
############################################################################### |
|||
|
|||
seed_everything(0) |
|||
|
|||
config_path = 'configs/instant-mesh-large-eval.yaml' |
|||
config = OmegaConf.load(config_path) |
|||
config_name = os.path.basename(config_path).replace('.yaml', '') |
|||
model_config = config.model_config |
|||
infer_config = config.infer_config |
|||
|
|||
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False |
|||
|
|||
device = torch.device('cuda') |
|||
|
|||
# load diffusion model |
|||
print('Loading diffusion model ...') |
|||
pipeline = DiffusionPipeline.from_pretrained( |
|||
"sudo-ai/zero123plus-v1.2", |
|||
custom_pipeline="zero123plus", |
|||
torch_dtype=torch.float16, |
|||
) |
|||
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( |
|||
pipeline.scheduler.config, timestep_spacing='trailing' |
|||
) |
|||
|
|||
# load custom white-background UNet |
|||
state_dict = torch.load(infer_config.unet_path, map_location='cpu') |
|||
pipeline.unet.load_state_dict(state_dict, strict=True) |
|||
|
|||
pipeline = pipeline.to(device) |
|||
|
|||
# load reconstruction model |
|||
print('Loading reconstruction model ...') |
|||
model = instantiate_from_config(model_config) |
|||
state_dict = torch.load(infer_config.model_path, map_location='cpu')['state_dict'] |
|||
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} |
|||
model.load_state_dict(state_dict, strict=True) |
|||
|
|||
model = model.to(device) |
|||
if IS_FLEXICUBES: |
|||
model.init_flexicubes_geometry(device) |
|||
model = model.eval() |
|||
|
|||
print('Loading Finished!') |
|||
|
|||
|
|||
def check_input_image(input_image): |
|||
if input_image is None: |
|||
raise gr.Error("No image uploaded!") |
|||
|
|||
|
|||
def preprocess(input_image, do_remove_background): |
|||
|
|||
rembg_session = rembg.new_session() if do_remove_background else None |
|||
|
|||
#input_image = Image.open(image_file) |
|||
if do_remove_background: |
|||
input_image = remove_background(input_image, rembg_session) |
|||
|
|||
return input_image |
|||
|
|||
|
|||
def generate_mvs(input_image, sample_steps, sample_seed): |
|||
|
|||
seed_everything(sample_seed) |
|||
|
|||
# sampling |
|||
generator = torch.Generator(device=device) |
|||
z123_image = pipeline( |
|||
input_image, |
|||
num_inference_steps=sample_steps, |
|||
generator=generator, |
|||
).images[0] |
|||
|
|||
show_image = np.asarray(z123_image, dtype=np.uint8) |
|||
show_image = torch.from_numpy(show_image) # (960, 640, 3) |
|||
show_image = rearrange(show_image, '(n h) (m w) c -> (m h) (n w) c', n=3, m=2) |
|||
show_image = Image.fromarray(show_image.numpy()) |
|||
|
|||
return z123_image, show_image |
|||
|
|||
def make_mesh(mesh_fpath, planes): |
|||
|
|||
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|||
mesh_dirname = os.path.dirname(mesh_fpath) |
|||
mesh_vis_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb") |
|||
|
|||
with torch.no_grad(): |
|||
# get mesh |
|||
|
|||
mesh_out = model.extract_mesh( |
|||
planes, |
|||
use_texture_map=False, |
|||
**infer_config, |
|||
) |
|||
|
|||
vertices, faces, vertex_colors = mesh_out |
|||
vertices = vertices[:, [0, 2, 1]] |
|||
vertices[:, -1] *= -1 |
|||
|
|||
save_obj(vertices, faces, vertex_colors, mesh_fpath) |
|||
|
|||
print(f"Mesh saved to {mesh_fpath}") |
|||
|
|||
return mesh_fpath |
|||
|
|||
def make3d(images): |
|||
|
|||
images = np.asarray(images, dtype=np.float32) / 255.0 |
|||
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) |
|||
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) |
|||
|
|||
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=2.5).to(device) |
|||
render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device) |
|||
|
|||
images = images.unsqueeze(0).to(device) |
|||
images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) |
|||
|
|||
mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name |
|||
print(mesh_fpath) |
|||
mesh_basename = os.path.basename(mesh_fpath).split('.')[0] |
|||
mesh_dirname = os.path.dirname(mesh_fpath) |
|||
video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4") |
|||
|
|||
with torch.no_grad(): |
|||
# get triplane |
|||
planes = model.forward_planes(images, input_cameras) |
|||
|
|||
# get video |
|||
chunk_size = 20 if IS_FLEXICUBES else 1 |
|||
render_size = 384 |
|||
|
|||
frames = [] |
|||
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)): |
|||
if IS_FLEXICUBES: |
|||
frame = model.forward_geometry( |
|||
planes, |
|||
render_cameras[:, i:i+chunk_size], |
|||
render_size=render_size, |
|||
)['img'] |
|||
else: |
|||
frame = model.synthesizer( |
|||
planes, |
|||
cameras=render_cameras[:, i:i+chunk_size], |
|||
render_size=render_size, |
|||
)['images_rgb'] |
|||
frames.append(frame) |
|||
frames = torch.cat(frames, dim=1) |
|||
|
|||
images_to_video( |
|||
frames[0], |
|||
video_fpath, |
|||
fps=30, |
|||
) |
|||
|
|||
print(f"Video saved to {video_fpath}") |
|||
|
|||
mesh_fpath = make_mesh(mesh_fpath, planes) |
|||
|
|||
return video_fpath, mesh_fpath |
|||
|
|||
|
|||
def run_example(image_file): |
|||
|
|||
preprocessed = preprocess(image_file, False, 0.85) |
|||
mv_images, _ = generate_mvs(preprocessed, 20, 0) |
|||
video_name, mesh_fpath, planes = make3d(mv_images) |
|||
mesh_name = make_mesh(mesh_fpath, planes) |
|||
|
|||
return preprocessed, mesh_name, video_name |
|||
|
|||
|
|||
import gradio as gr |
|||
|
|||
HEADER = ''' |
|||
<h3> |
|||
<b>Official 🤗 Gradio demo</b> for |
|||
<a href='https://github.com/TencentARC/InstantMesh' target='_blank'> |
|||
<b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b> |
|||
</a>. |
|||
</h3> |
|||
<br> |
|||
* If the output is unsatisfying, try to use a different seed. |
|||
''' |
|||
|
|||
with gr.Blocks() as demo: |
|||
gr.Markdown(HEADER) |
|||
with gr.Row(variant="panel"): |
|||
with gr.Column(): |
|||
with gr.Row(): |
|||
input_image = gr.Image( |
|||
label="Input Image", |
|||
image_mode="RGBA", |
|||
sources="upload", |
|||
width=256, |
|||
height=256, |
|||
type="pil", |
|||
elem_id="content_image", |
|||
) |
|||
processed_image = gr.Image( |
|||
label="Processed Image", |
|||
image_mode="RGBA", |
|||
width=256, |
|||
height=256, |
|||
type="pil", |
|||
interactive=False |
|||
) |
|||
with gr.Row(): |
|||
with gr.Group(): |
|||
do_remove_background = gr.Checkbox( |
|||
label="Remove Background", value=True |
|||
) |
|||
sample_seed = gr.Number(value=42, label="Seed", precision=0) |
|||
|
|||
sample_steps = gr.Slider( |
|||
label="Sample Steps", |
|||
minimum=30, |
|||
maximum=75, |
|||
value=75, |
|||
step=5 |
|||
) |
|||
|
|||
with gr.Row(): |
|||
submit = gr.Button("Generate", elem_id="generate", variant="primary") |
|||
|
|||
with gr.Row(variant="panel"): |
|||
gr.Examples( |
|||
examples=[ |
|||
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) |
|||
], |
|||
inputs=[input_image], |
|||
# outputs=[processed_image, output_model_obj, output_video], |
|||
# fn=partial(run_example), |
|||
# cache_examples=True, |
|||
label="Examples", |
|||
examples_per_page=20 |
|||
) |
|||
|
|||
with gr.Column(): |
|||
|
|||
with gr.Row(): |
|||
|
|||
with gr.Column(): |
|||
mv_show_images = gr.Image( |
|||
label="Generated Multi-views", |
|||
type="pil", |
|||
width=379, |
|||
interactive=False |
|||
) |
|||
|
|||
with gr.Column(): |
|||
output_video = gr.Video( |
|||
label="video", format="mp4", |
|||
width=379, |
|||
autoplay=True, |
|||
interactive=False |
|||
) |
|||
|
|||
with gr.Row(): |
|||
output_model_obj = gr.Model3D( |
|||
label="Output Model (OBJ Format)", |
|||
width=768, |
|||
interactive=False, |
|||
) |
|||
|
|||
mv_images = gr.State() |
|||
|
|||
submit.click(fn=check_input_image, inputs=[input_image]).success( |
|||
fn=preprocess, |
|||
inputs=[input_image, do_remove_background], |
|||
outputs=[processed_image], |
|||
).success( |
|||
fn=generate_mvs, |
|||
inputs=[processed_image, sample_steps, sample_seed], |
|||
outputs=[mv_images, mv_show_images], |
|||
).success( |
|||
fn=make3d, |
|||
inputs=[mv_images], |
|||
outputs=[output_video, output_model_obj] |
|||
) |
|||
|
|||
demo.queue(max_size=10) |
|||
demo.launch(server_name="0.0.0.0", server_port=43839) |
Loading…
Reference in new issue