|
|
@ -0,0 +1,975 @@ |
|
|
|
// Copyright (c) Microsoft Corporation. All rights reserved.
|
|
|
|
// Licensed under the MIT License.
|
|
|
|
|
|
|
|
// Summary: The Ort C++ API is a header only wrapper around the Ort C API.
|
|
|
|
//
|
|
|
|
// The C++ API simplifies usage by returning values directly instead of error codes, throwing exceptions on errors
|
|
|
|
// and automatically releasing resources in the destructors.
|
|
|
|
//
|
|
|
|
// Each of the C++ wrapper classes holds only a pointer to the C internal object. Treat them like smart pointers.
|
|
|
|
// To create an empty object, pass 'nullptr' to the constructor (for example, Env e{nullptr};).
|
|
|
|
//
|
|
|
|
// Only move assignment between objects is allowed, there are no copy constructors. Some objects have explicit 'Clone'
|
|
|
|
// methods for this purpose.
|
|
|
|
|
|
|
|
#pragma once |
|
|
|
#include "onnxruntime_c_api.h" |
|
|
|
#include <cstddef> |
|
|
|
#include <array> |
|
|
|
#include <memory> |
|
|
|
#include <stdexcept> |
|
|
|
#include <string> |
|
|
|
#include <vector> |
|
|
|
#include <utility> |
|
|
|
#include <type_traits> |
|
|
|
|
|
|
|
#ifdef ORT_NO_EXCEPTIONS |
|
|
|
#include <iostream> |
|
|
|
#endif |
|
|
|
|
|
|
|
/** \brief All C++ Onnxruntime APIs are defined inside this namespace
|
|
|
|
* |
|
|
|
*/ |
|
|
|
namespace Ort { |
|
|
|
|
|
|
|
/** \brief All C++ methods that can fail will throw an exception of this type
|
|
|
|
* |
|
|
|
* If <tt>ORT_NO_EXCEPTIONS</tt> is defined, then any error will result in a call to abort() |
|
|
|
*/ |
|
|
|
struct Exception : std::exception { |
|
|
|
Exception(std::string&& string, OrtErrorCode code) : message_{std::move(string)}, code_{code} {} |
|
|
|
|
|
|
|
OrtErrorCode GetOrtErrorCode() const { return code_; } |
|
|
|
const char* what() const noexcept override { return message_.c_str(); } |
|
|
|
|
|
|
|
private: |
|
|
|
std::string message_; |
|
|
|
OrtErrorCode code_; |
|
|
|
}; |
|
|
|
|
|
|
|
#ifdef ORT_NO_EXCEPTIONS |
|
|
|
#define ORT_CXX_API_THROW(string, code) \ |
|
|
|
do { \ |
|
|
|
std::cerr << Ort::Exception(string, code) \ |
|
|
|
.what() \ |
|
|
|
<< std::endl; \ |
|
|
|
abort(); \ |
|
|
|
} while (false) |
|
|
|
#else |
|
|
|
#define ORT_CXX_API_THROW(string, code) \ |
|
|
|
throw Ort::Exception(string, code) |
|
|
|
#endif |
|
|
|
|
|
|
|
// This is used internally by the C++ API. This class holds the global variable that points to the OrtApi, it's in a template so that we can define a global variable in a header and make
|
|
|
|
// it transparent to the users of the API.
|
|
|
|
template <typename T> |
|
|
|
struct Global { |
|
|
|
static const OrtApi* api_; |
|
|
|
}; |
|
|
|
|
|
|
|
// If macro ORT_API_MANUAL_INIT is defined, no static initialization will be performed. Instead, user must call InitApi() before using it.
|
|
|
|
template <typename T> |
|
|
|
#ifdef ORT_API_MANUAL_INIT |
|
|
|
const OrtApi* Global<T>::api_{}; |
|
|
|
inline void InitApi() { Global<void>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION); } |
|
|
|
#else |
|
|
|
const OrtApi* Global<T>::api_ = OrtGetApiBase()->GetApi(ORT_API_VERSION); |
|
|
|
#endif |
|
|
|
|
|
|
|
/// This returns a reference to the OrtApi interface in use
|
|
|
|
inline const OrtApi& GetApi() { return *Global<void>::api_; } |
|
|
|
|
|
|
|
/// This is a C++ wrapper for OrtApi::GetAvailableProviders() and returns a vector of strings representing the available execution providers.
|
|
|
|
std::vector<std::string> GetAvailableProviders(); |
|
|
|
|
|
|
|
// This is used internally by the C++ API. This macro is to make it easy to generate overloaded methods for all of the various OrtRelease* functions for every Ort* type
|
|
|
|
// This can't be done in the C API since C doesn't have function overloading.
|
|
|
|
#define ORT_DEFINE_RELEASE(NAME) \ |
|
|
|
inline void OrtRelease(Ort##NAME* ptr) { GetApi().Release##NAME(ptr); } |
|
|
|
|
|
|
|
ORT_DEFINE_RELEASE(Allocator); |
|
|
|
ORT_DEFINE_RELEASE(MemoryInfo); |
|
|
|
ORT_DEFINE_RELEASE(CustomOpDomain); |
|
|
|
ORT_DEFINE_RELEASE(Env); |
|
|
|
ORT_DEFINE_RELEASE(RunOptions); |
|
|
|
ORT_DEFINE_RELEASE(Session); |
|
|
|
ORT_DEFINE_RELEASE(SessionOptions); |
|
|
|
ORT_DEFINE_RELEASE(TensorTypeAndShapeInfo); |
|
|
|
ORT_DEFINE_RELEASE(SequenceTypeInfo); |
|
|
|
ORT_DEFINE_RELEASE(MapTypeInfo); |
|
|
|
ORT_DEFINE_RELEASE(TypeInfo); |
|
|
|
ORT_DEFINE_RELEASE(Value); |
|
|
|
ORT_DEFINE_RELEASE(ModelMetadata); |
|
|
|
ORT_DEFINE_RELEASE(ThreadingOptions); |
|
|
|
ORT_DEFINE_RELEASE(IoBinding); |
|
|
|
ORT_DEFINE_RELEASE(ArenaCfg); |
|
|
|
|
|
|
|
#undef ORT_DEFINE_RELEASE |
|
|
|
|
|
|
|
/** \brief IEEE 754 half-precision floating point data type
|
|
|
|
* \details It is necessary for type dispatching to make use of C++ API |
|
|
|
* The type is implicitly convertible to/from uint16_t. |
|
|
|
* The size of the structure should align with uint16_t and one can freely cast |
|
|
|
* uint16_t buffers to/from Ort::Float16_t to feed and retrieve data. |
|
|
|
* |
|
|
|
* Generally, you can feed any of your types as float16/blfoat16 data to create a tensor |
|
|
|
* on top of it, providing it can form a continuous buffer with 16-bit elements with no padding. |
|
|
|
* And you can also feed a array of uint16_t elements directly. For example, |
|
|
|
* |
|
|
|
* \code{.unparsed} |
|
|
|
* uint16_t values[] = { 15360, 16384, 16896, 17408, 17664}; |
|
|
|
* constexpr size_t values_length = sizeof(values) / sizeof(values[0]); |
|
|
|
* std::vector<int64_t> dims = {values_length}; // one dimensional example
|
|
|
|
* Ort::MemoryInfo info("Cpu", OrtDeviceAllocator, 0, OrtMemTypeDefault); |
|
|
|
* // Note we are passing bytes count in this api, not number of elements -> sizeof(values)
|
|
|
|
* auto float16_tensor = Ort::Value::CreateTensor(info, values, sizeof(values), |
|
|
|
* dims.data(), dims.size(), ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16); |
|
|
|
* \endcode |
|
|
|
* |
|
|
|
* Here is another example, a little bit more elaborate. Let's assume that you use your own float16 type and you want to use |
|
|
|
* a templated version of the API above so the type is automatically set based on your type. You will need to supply an extra |
|
|
|
* template specialization. |
|
|
|
* |
|
|
|
* \code{.unparsed} |
|
|
|
* namespace yours { struct half {}; } // assume this is your type, define this:
|
|
|
|
* namespace Ort { |
|
|
|
* template<> |
|
|
|
* struct TypeToTensorType<yours::half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; }; |
|
|
|
* } //namespace Ort
|
|
|
|
* |
|
|
|
* std::vector<yours::half> values; |
|
|
|
* std::vector<int64_t> dims = {values.size()}; // one dimensional example
|
|
|
|
* Ort::MemoryInfo info("Cpu", OrtDeviceAllocator, 0, OrtMemTypeDefault); |
|
|
|
* // Here we are passing element count -> values.size()
|
|
|
|
* auto float16_tensor = Ort::Value::CreateTensor<yours::half>(info, values.data(), values.size(), dims.data(), dims.size()); |
|
|
|
* |
|
|
|
* \endcode |
|
|
|
*/ |
|
|
|
struct Float16_t { |
|
|
|
uint16_t value; |
|
|
|
constexpr Float16_t() noexcept : value(0) {} |
|
|
|
constexpr Float16_t(uint16_t v) noexcept : value(v) {} |
|
|
|
constexpr operator uint16_t() const noexcept { return value; } |
|
|
|
constexpr bool operator==(const Float16_t& rhs) const noexcept { return value == rhs.value; }; |
|
|
|
constexpr bool operator!=(const Float16_t& rhs) const noexcept { return value != rhs.value; }; |
|
|
|
}; |
|
|
|
|
|
|
|
static_assert(sizeof(Float16_t) == sizeof(uint16_t), "Sizes must match"); |
|
|
|
|
|
|
|
/** \brief bfloat16 (Brain Floating Point) data type
|
|
|
|
* \details It is necessary for type dispatching to make use of C++ API |
|
|
|
* The type is implicitly convertible to/from uint16_t. |
|
|
|
* The size of the structure should align with uint16_t and one can freely cast |
|
|
|
* uint16_t buffers to/from Ort::BFloat16_t to feed and retrieve data. |
|
|
|
* |
|
|
|
* See also code examples for Float16_t above. |
|
|
|
*/ |
|
|
|
struct BFloat16_t { |
|
|
|
uint16_t value; |
|
|
|
constexpr BFloat16_t() noexcept : value(0) {} |
|
|
|
constexpr BFloat16_t(uint16_t v) noexcept : value(v) {} |
|
|
|
constexpr operator uint16_t() const noexcept { return value; } |
|
|
|
constexpr bool operator==(const BFloat16_t& rhs) const noexcept { return value == rhs.value; }; |
|
|
|
constexpr bool operator!=(const BFloat16_t& rhs) const noexcept { return value != rhs.value; }; |
|
|
|
}; |
|
|
|
|
|
|
|
static_assert(sizeof(BFloat16_t) == sizeof(uint16_t), "Sizes must match"); |
|
|
|
|
|
|
|
/** \brief Used internally by the C++ API. C++ wrapper types inherit from this
|
|
|
|
* |
|
|
|
* This is a zero cost abstraction to wrap the C API objects and delete them on destruction. |
|
|
|
* There is a secondary class 'Unowned<T>' that is used to prevent deletion on destruction (Used for return types that are |
|
|
|
* not owned by the caller) |
|
|
|
* |
|
|
|
*/ |
|
|
|
template <typename T> |
|
|
|
struct Base { |
|
|
|
using contained_type = T; |
|
|
|
|
|
|
|
Base() = default; |
|
|
|
Base(T* p) : p_{p} { |
|
|
|
if (!p) |
|
|
|
ORT_CXX_API_THROW("Allocation failure", ORT_FAIL); |
|
|
|
} |
|
|
|
~Base() { OrtRelease(p_); } |
|
|
|
|
|
|
|
operator T*() { return p_; } |
|
|
|
operator const T*() const { return p_; } |
|
|
|
|
|
|
|
/// \brief Releases ownership of the contained pointer
|
|
|
|
T* release() { |
|
|
|
T* p = p_; |
|
|
|
p_ = nullptr; |
|
|
|
return p; |
|
|
|
} |
|
|
|
|
|
|
|
protected: |
|
|
|
Base(const Base&) = delete; |
|
|
|
Base& operator=(const Base&) = delete; |
|
|
|
Base(Base&& v) noexcept : p_{v.p_} { v.p_ = nullptr; } |
|
|
|
void operator=(Base&& v) noexcept { |
|
|
|
OrtRelease(p_); |
|
|
|
p_ = v.release(); |
|
|
|
} |
|
|
|
|
|
|
|
T* p_{}; |
|
|
|
|
|
|
|
template <typename> |
|
|
|
friend struct Unowned; // This friend line is needed to keep the centos C++ compiler from giving an error
|
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Wraps an object that inherits from Ort::Base and stops it from deleting the contained pointer on destruction
|
|
|
|
* |
|
|
|
* This has the effect of making it not own the memory held by Ort::Base. |
|
|
|
*/ |
|
|
|
template <typename T> |
|
|
|
struct Unowned : T { |
|
|
|
Unowned(typename T::contained_type* p) : T{p} {} |
|
|
|
Unowned(Unowned&& v) : T{v.p_} {} |
|
|
|
~Unowned() { this->release(); } |
|
|
|
}; |
|
|
|
|
|
|
|
struct AllocatorWithDefaultOptions; |
|
|
|
struct MemoryInfo; |
|
|
|
struct Env; |
|
|
|
struct TypeInfo; |
|
|
|
struct Value; |
|
|
|
struct ModelMetadata; |
|
|
|
|
|
|
|
/** \brief The Env (Environment)
|
|
|
|
* |
|
|
|
* The Env holds the logging state used by all other objects. |
|
|
|
* <b>Note:</b> One Env must be created before using any other Onnxruntime functionality |
|
|
|
*/ |
|
|
|
struct Env : Base<OrtEnv> { |
|
|
|
explicit Env(std::nullptr_t) {} ///< Create an empty Env object, must be assigned a valid one to be used
|
|
|
|
|
|
|
|
/// \brief Wraps OrtApi::CreateEnv
|
|
|
|
Env(OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = ""); |
|
|
|
|
|
|
|
/// \brief Wraps OrtApi::CreateEnvWithCustomLogger
|
|
|
|
Env(OrtLoggingLevel logging_level, const char* logid, OrtLoggingFunction logging_function, void* logger_param); |
|
|
|
|
|
|
|
/// \brief Wraps OrtApi::CreateEnvWithGlobalThreadPools
|
|
|
|
Env(const OrtThreadingOptions* tp_options, OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = ""); |
|
|
|
|
|
|
|
/// \brief Wraps OrtApi::CreateEnvWithCustomLoggerAndGlobalThreadPools
|
|
|
|
Env(const OrtThreadingOptions* tp_options, OrtLoggingFunction logging_function, void* logger_param, |
|
|
|
OrtLoggingLevel logging_level = ORT_LOGGING_LEVEL_WARNING, _In_ const char* logid = ""); |
|
|
|
|
|
|
|
/// \brief C Interop Helper
|
|
|
|
explicit Env(OrtEnv* p) : Base<OrtEnv>{p} {} |
|
|
|
|
|
|
|
Env& EnableTelemetryEvents(); ///< Wraps OrtApi::EnableTelemetryEvents
|
|
|
|
Env& DisableTelemetryEvents(); ///< Wraps OrtApi::DisableTelemetryEvents
|
|
|
|
|
|
|
|
Env& CreateAndRegisterAllocator(const OrtMemoryInfo* mem_info, const OrtArenaCfg* arena_cfg); ///< Wraps OrtApi::CreateAndRegisterAllocator
|
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Custom Op Domain
|
|
|
|
* |
|
|
|
*/ |
|
|
|
struct CustomOpDomain : Base<OrtCustomOpDomain> { |
|
|
|
explicit CustomOpDomain(std::nullptr_t) {} ///< Create an empty CustomOpDomain object, must be assigned a valid one to be used
|
|
|
|
|
|
|
|
/// \brief Wraps OrtApi::CreateCustomOpDomain
|
|
|
|
explicit CustomOpDomain(const char* domain); |
|
|
|
|
|
|
|
void Add(OrtCustomOp* op); ///< Wraps CustomOpDomain_Add
|
|
|
|
}; |
|
|
|
|
|
|
|
struct RunOptions : Base<OrtRunOptions> { |
|
|
|
explicit RunOptions(std::nullptr_t) {} ///< Create an empty RunOptions object, must be assigned a valid one to be used
|
|
|
|
RunOptions(); ///< Wraps OrtApi::CreateRunOptions
|
|
|
|
|
|
|
|
RunOptions& SetRunLogVerbosityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogVerbosityLevel
|
|
|
|
int GetRunLogVerbosityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogVerbosityLevel
|
|
|
|
|
|
|
|
RunOptions& SetRunLogSeverityLevel(int); ///< Wraps OrtApi::RunOptionsSetRunLogSeverityLevel
|
|
|
|
int GetRunLogSeverityLevel() const; ///< Wraps OrtApi::RunOptionsGetRunLogSeverityLevel
|
|
|
|
|
|
|
|
RunOptions& SetRunTag(const char* run_tag); ///< wraps OrtApi::RunOptionsSetRunTag
|
|
|
|
const char* GetRunTag() const; ///< Wraps OrtApi::RunOptionsGetRunTag
|
|
|
|
|
|
|
|
RunOptions& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddRunConfigEntry
|
|
|
|
|
|
|
|
/** \brief Terminates all currently executing Session::Run calls that were made using this RunOptions instance
|
|
|
|
* |
|
|
|
* If a currently executing session needs to be force terminated, this can be called from another thread to force it to fail with an error |
|
|
|
* Wraps OrtApi::RunOptionsSetTerminate |
|
|
|
*/ |
|
|
|
RunOptions& SetTerminate(); |
|
|
|
|
|
|
|
/** \brief Clears the terminate flag so this RunOptions instance can be used in a new Session::Run call without it instantly terminating
|
|
|
|
* |
|
|
|
* Wraps OrtApi::RunOptionsUnsetTerminate |
|
|
|
*/ |
|
|
|
RunOptions& UnsetTerminate(); |
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Options object used when creating a new Session object
|
|
|
|
* |
|
|
|
* Wraps ::OrtSessionOptions object and methods |
|
|
|
*/ |
|
|
|
struct SessionOptions : Base<OrtSessionOptions> { |
|
|
|
explicit SessionOptions(std::nullptr_t) {} ///< Create an empty SessionOptions object, must be assigned a valid one to be used
|
|
|
|
SessionOptions(); ///< Wraps OrtApi::CreateSessionOptions
|
|
|
|
explicit SessionOptions(OrtSessionOptions* p) : Base<OrtSessionOptions>{p} {} ///< Used for interop with the C API
|
|
|
|
|
|
|
|
SessionOptions Clone() const; ///< Creates and returns a copy of this SessionOptions object. Wraps OrtApi::CloneSessionOptions
|
|
|
|
|
|
|
|
SessionOptions& SetIntraOpNumThreads(int intra_op_num_threads); ///< Wraps OrtApi::SetIntraOpNumThreads
|
|
|
|
SessionOptions& SetInterOpNumThreads(int inter_op_num_threads); ///< Wraps OrtApi::SetInterOpNumThreads
|
|
|
|
SessionOptions& SetGraphOptimizationLevel(GraphOptimizationLevel graph_optimization_level); ///< Wraps OrtApi::SetSessionGraphOptimizationLevel
|
|
|
|
|
|
|
|
SessionOptions& EnableCpuMemArena(); ///< Wraps OrtApi::EnableCpuMemArena
|
|
|
|
SessionOptions& DisableCpuMemArena(); ///< Wraps OrtApi::DisableCpuMemArena
|
|
|
|
|
|
|
|
SessionOptions& SetOptimizedModelFilePath(const ORTCHAR_T* optimized_model_file); ///< Wraps OrtApi::SetOptimizedModelFilePath
|
|
|
|
|
|
|
|
SessionOptions& EnableProfiling(const ORTCHAR_T* profile_file_prefix); ///< Wraps OrtApi::EnableProfiling
|
|
|
|
SessionOptions& DisableProfiling(); ///< Wraps OrtApi::DisableProfiling
|
|
|
|
|
|
|
|
SessionOptions& EnableOrtCustomOps(); ///< Wraps OrtApi::EnableOrtCustomOps
|
|
|
|
|
|
|
|
SessionOptions& EnableMemPattern(); ///< Wraps OrtApi::EnableMemPattern
|
|
|
|
SessionOptions& DisableMemPattern(); ///< Wraps OrtApi::DisableMemPattern
|
|
|
|
|
|
|
|
SessionOptions& SetExecutionMode(ExecutionMode execution_mode); ///< Wraps OrtApi::SetSessionExecutionMode
|
|
|
|
|
|
|
|
SessionOptions& SetLogId(const char* logid); ///< Wraps OrtApi::SetSessionLogId
|
|
|
|
SessionOptions& SetLogSeverityLevel(int level); ///< Wraps OrtApi::SetSessionLogSeverityLevel
|
|
|
|
|
|
|
|
SessionOptions& Add(OrtCustomOpDomain* custom_op_domain); ///< Wraps OrtApi::AddCustomOpDomain
|
|
|
|
|
|
|
|
SessionOptions& DisablePerSessionThreads(); ///< Wraps OrtApi::DisablePerSessionThreads
|
|
|
|
|
|
|
|
SessionOptions& AddConfigEntry(const char* config_key, const char* config_value); ///< Wraps OrtApi::AddSessionConfigEntry
|
|
|
|
SessionOptions& AddInitializer(const char* name, const OrtValue* ort_val); ///< Wraps OrtApi::AddInitializer
|
|
|
|
|
|
|
|
SessionOptions& AppendExecutionProvider_CUDA(const OrtCUDAProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_CUDA
|
|
|
|
SessionOptions& AppendExecutionProvider_ROCM(const OrtROCMProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_ROCM
|
|
|
|
SessionOptions& AppendExecutionProvider_OpenVINO(const OrtOpenVINOProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_OpenVINO
|
|
|
|
SessionOptions& AppendExecutionProvider_TensorRT(const OrtTensorRTProviderOptions& provider_options); ///< Wraps OrtApi::SessionOptionsAppendExecutionProvider_TensorRT
|
|
|
|
|
|
|
|
SessionOptions& SetCustomCreateThreadFn(OrtCustomCreateThreadFn ort_custom_create_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomCreateThreadFn
|
|
|
|
SessionOptions& SetCustomThreadCreationOptions(void* ort_custom_thread_creation_options); ///< Wraps OrtApi::SessionOptionsSetCustomThreadCreationOptions
|
|
|
|
SessionOptions& SetCustomJoinThreadFn(OrtCustomJoinThreadFn ort_custom_join_thread_fn); ///< Wraps OrtApi::SessionOptionsSetCustomJoinThreadFn
|
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Wrapper around ::OrtModelMetadata
|
|
|
|
* |
|
|
|
*/ |
|
|
|
struct ModelMetadata : Base<OrtModelMetadata> { |
|
|
|
explicit ModelMetadata(std::nullptr_t) {} ///< Create an empty ModelMetadata object, must be assigned a valid one to be used
|
|
|
|
explicit ModelMetadata(OrtModelMetadata* p) : Base<OrtModelMetadata>{p} {} ///< Used for interop with the C API
|
|
|
|
|
|
|
|
char* GetProducerName(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetProducerName
|
|
|
|
char* GetGraphName(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphName
|
|
|
|
char* GetDomain(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDomain
|
|
|
|
char* GetDescription(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetDescription
|
|
|
|
char* GetGraphDescription(OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataGetGraphDescription
|
|
|
|
char** GetCustomMetadataMapKeys(OrtAllocator* allocator, _Out_ int64_t& num_keys) const; ///< Wraps OrtApi::ModelMetadataGetCustomMetadataMapKeys
|
|
|
|
char* LookupCustomMetadataMap(const char* key, OrtAllocator* allocator) const; ///< Wraps OrtApi::ModelMetadataLookupCustomMetadataMap
|
|
|
|
int64_t GetVersion() const; ///< Wraps OrtApi::ModelMetadataGetVersion
|
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Wrapper around ::OrtSession
|
|
|
|
* |
|
|
|
*/ |
|
|
|
struct Session : Base<OrtSession> { |
|
|
|
explicit Session(std::nullptr_t) {} ///< Create an empty Session object, must be assigned a valid one to be used
|
|
|
|
Session(Env& env, const ORTCHAR_T* model_path, const SessionOptions& options); ///< Wraps OrtApi::CreateSession
|
|
|
|
Session(Env& env, const ORTCHAR_T* model_path, const SessionOptions& options, OrtPrepackedWeightsContainer* prepacked_weights_container); ///< Wraps OrtApi::CreateSessionWithPrepackedWeightsContainer
|
|
|
|
Session(Env& env, const void* model_data, size_t model_data_length, const SessionOptions& options); ///< Wraps OrtApi::CreateSessionFromArray
|
|
|
|
|
|
|
|
/** \brief Run the model returning results in an Ort allocated vector.
|
|
|
|
* |
|
|
|
* Wraps OrtApi::Run |
|
|
|
* |
|
|
|
* The caller provides a list of inputs and a list of the desired outputs to return. |
|
|
|
* |
|
|
|
* See the output logs for more information on warnings/errors that occur while processing the model. |
|
|
|
* Common errors are.. (TODO) |
|
|
|
* |
|
|
|
* \param[in] run_options |
|
|
|
* \param[in] input_names Array of null terminated strings of length input_count that is the list of input names |
|
|
|
* \param[in] input_values Array of Value objects of length input_count that is the list of input values |
|
|
|
* \param[in] input_count Number of inputs (the size of the input_names & input_values arrays) |
|
|
|
* \param[in] output_names Array of C style strings of length output_count that is the list of output names |
|
|
|
* \param[in] output_count Number of outputs (the size of the output_names array) |
|
|
|
* \return A std::vector of Value objects that directly maps to the output_count (eg. output_name[0] is the first entry of the returned vector) |
|
|
|
*/ |
|
|
|
std::vector<Value> Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, |
|
|
|
const char* const* output_names, size_t output_count); |
|
|
|
|
|
|
|
/** \brief Run the model returning results in user provided outputs
|
|
|
|
* Same as Run(const RunOptions&, const char* const*, const Value*, size_t,const char* const*, size_t) |
|
|
|
*/ |
|
|
|
void Run(const RunOptions& run_options, const char* const* input_names, const Value* input_values, size_t input_count, |
|
|
|
const char* const* output_names, Value* output_values, size_t output_count); |
|
|
|
|
|
|
|
void Run(const RunOptions& run_options, const struct IoBinding&); ///< Wraps OrtApi::RunWithBinding
|
|
|
|
|
|
|
|
size_t GetInputCount() const; ///< Returns the number of model inputs
|
|
|
|
size_t GetOutputCount() const; ///< Returns the number of model outputs
|
|
|
|
size_t GetOverridableInitializerCount() const; ///< Returns the number of inputs that have defaults that can be overridden
|
|
|
|
|
|
|
|
char* GetInputName(size_t index, OrtAllocator* allocator) const; ///< Wraps OrtApi::SessionGetInputName
|
|
|
|
char* GetOutputName(size_t index, OrtAllocator* allocator) const; ///< Wraps OrtApi::SessionGetOutputName
|
|
|
|
char* GetOverridableInitializerName(size_t index, OrtAllocator* allocator) const; ///< Wraps OrtApi::SessionGetOverridableInitializerName
|
|
|
|
char* EndProfiling(OrtAllocator* allocator) const; ///< Wraps OrtApi::SessionEndProfiling
|
|
|
|
uint64_t GetProfilingStartTimeNs() const; ///< Wraps OrtApi::SessionGetProfilingStartTimeNs
|
|
|
|
ModelMetadata GetModelMetadata() const; ///< Wraps OrtApi::SessionGetModelMetadata
|
|
|
|
|
|
|
|
TypeInfo GetInputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetInputTypeInfo
|
|
|
|
TypeInfo GetOutputTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOutputTypeInfo
|
|
|
|
TypeInfo GetOverridableInitializerTypeInfo(size_t index) const; ///< Wraps OrtApi::SessionGetOverridableInitializerTypeInfo
|
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Wrapper around ::OrtTensorTypeAndShapeInfo
|
|
|
|
* |
|
|
|
*/ |
|
|
|
struct TensorTypeAndShapeInfo : Base<OrtTensorTypeAndShapeInfo> { |
|
|
|
explicit TensorTypeAndShapeInfo(std::nullptr_t) {} ///< Create an empty TensorTypeAndShapeInfo object, must be assigned a valid one to be used
|
|
|
|
explicit TensorTypeAndShapeInfo(OrtTensorTypeAndShapeInfo* p) : Base<OrtTensorTypeAndShapeInfo>{p} {} ///< Used for interop with the C API
|
|
|
|
|
|
|
|
ONNXTensorElementDataType GetElementType() const; ///< Wraps OrtApi::GetTensorElementType
|
|
|
|
size_t GetElementCount() const; ///< Wraps OrtApi::GetTensorShapeElementCount
|
|
|
|
|
|
|
|
size_t GetDimensionsCount() const; ///< Wraps OrtApi::GetDimensionsCount
|
|
|
|
void GetDimensions(int64_t* values, size_t values_count) const; ///< Wraps OrtApi::GetDimensions
|
|
|
|
void GetSymbolicDimensions(const char** values, size_t values_count) const; ///< Wraps OrtApi::GetSymbolicDimensions
|
|
|
|
|
|
|
|
std::vector<int64_t> GetShape() const; ///< Uses GetDimensionsCount & GetDimensions to return a std::vector of the shape
|
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Wrapper around ::OrtSequenceTypeInfo
|
|
|
|
* |
|
|
|
*/ |
|
|
|
struct SequenceTypeInfo : Base<OrtSequenceTypeInfo> { |
|
|
|
explicit SequenceTypeInfo(std::nullptr_t) {} ///< Create an empty SequenceTypeInfo object, must be assigned a valid one to be used
|
|
|
|
explicit SequenceTypeInfo(OrtSequenceTypeInfo* p) : Base<OrtSequenceTypeInfo>{p} {} ///< Used for interop with the C API
|
|
|
|
|
|
|
|
TypeInfo GetSequenceElementType() const; ///< Wraps OrtApi::GetSequenceElementType
|
|
|
|
}; |
|
|
|
|
|
|
|
/** \brief Wrapper around ::OrtMapTypeInfo
|
|
|
|
* |
|
|
|
*/ |
|
|
|
struct MapTypeInfo : Base<OrtMapTypeInfo> { |
|
|
|
explicit MapTypeInfo(std::nullptr_t) {} ///< Create an empty MapTypeInfo object, must be assigned a valid one to be used
|
|
|
|
explicit MapTypeInfo(OrtMapTypeInfo* p) : Base<OrtMapTypeInfo>{p} {} ///< Used for interop with the C API
|
|
|
|
|
|
|
|
ONNXTensorElementDataType GetMapKeyType() const; ///< Wraps OrtApi::GetMapKeyType
|
|
|
|
TypeInfo GetMapValueType() const; ///< Wraps OrtApi::GetMapValueType
|
|
|
|
}; |
|
|
|
|
|
|
|
struct TypeInfo : Base<OrtTypeInfo> { |
|
|
|
explicit TypeInfo(std::nullptr_t) {} ///< Create an empty TypeInfo object, must be assigned a valid one to be used
|
|
|
|
explicit TypeInfo(OrtTypeInfo* p) : Base<OrtTypeInfo>{p} {} ///< C API Interop
|
|
|
|
|
|
|
|
Unowned<TensorTypeAndShapeInfo> GetTensorTypeAndShapeInfo() const; ///< Wraps OrtApi::CastTypeInfoToTensorInfo
|
|
|
|
Unowned<SequenceTypeInfo> GetSequenceTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToSequenceTypeInfo
|
|
|
|
Unowned<MapTypeInfo> GetMapTypeInfo() const; ///< Wraps OrtApi::CastTypeInfoToMapTypeInfo
|
|
|
|
|
|
|
|
ONNXType GetONNXType() const; |
|
|
|
}; |
|
|
|
|
|
|
|
struct Value : Base<OrtValue> { |
|
|
|
// This structure is used to feed sparse tensor values
|
|
|
|
// information for use with FillSparseTensor<Format>() API
|
|
|
|
// if the data type for the sparse tensor values is numeric
|
|
|
|
// use data.p_data, otherwise, use data.str pointer to feed
|
|
|
|
// values. data.str is an array of const char* that are zero terminated.
|
|
|
|
// number of strings in the array must match shape size.
|
|
|
|
// For fully sparse tensors use shape {0} and set p_data/str
|
|
|
|
// to nullptr.
|
|
|
|
struct OrtSparseValuesParam { |
|
|
|
const int64_t* values_shape; |
|
|
|
size_t values_shape_len; |
|
|
|
union { |
|
|
|
const void* p_data; |
|
|
|
const char** str; |
|
|
|
} data; |
|
|
|
}; |
|
|
|
|
|
|
|
// Provides a way to pass shape in a single
|
|
|
|
// argument
|
|
|
|
struct Shape { |
|
|
|
const int64_t* shape; |
|
|
|
size_t shape_len; |
|
|
|
}; |
|
|
|
|
|
|
|
/// \brief Wraps OrtApi::CreateTensorWithDataAsOrtValue
|
|
|
|
template <typename T> |
|
|
|
static Value CreateTensor(const OrtMemoryInfo* info, T* p_data, size_t p_data_element_count, const int64_t* shape, size_t shape_len); |
|
|
|
/// \brief Wraps OrtApi::CreateTensorWithDataAsOrtValue
|
|
|
|
static Value CreateTensor(const OrtMemoryInfo* info, void* p_data, size_t p_data_byte_count, const int64_t* shape, size_t shape_len, |
|
|
|
ONNXTensorElementDataType type); |
|
|
|
|
|
|
|
#if !defined(DISABLE_SPARSE_TENSORS) |
|
|
|
/// <summary>
|
|
|
|
/// This is a simple forwarding method to the other overload that helps deducing
|
|
|
|
/// data type enum value from the type of the buffer.
|
|
|
|
/// </summary>
|
|
|
|
/// <typeparam name="T">numeric datatype. This API is not suitable for strings.</typeparam>
|
|
|
|
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param>
|
|
|
|
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param>
|
|
|
|
/// <param name="dense_shape">a would be dense shape of the tensor</param>
|
|
|
|
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param>
|
|
|
|
/// <returns></returns>
|
|
|
|
template <typename T> |
|
|
|
static Value CreateSparseTensor(const OrtMemoryInfo* info, T* p_data, const Shape& dense_shape, |
|
|
|
const Shape& values_shape); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Creates an OrtValue instance containing SparseTensor. This constructs
|
|
|
|
/// a sparse tensor that makes use of user allocated buffers. It does not make copies
|
|
|
|
/// of the user provided data and does not modify it. The lifespan of user provided buffers should
|
|
|
|
/// eclipse the life span of the resulting OrtValue. This call constructs an instance that only contain
|
|
|
|
/// a pointer to non-zero values. To fully populate the sparse tensor call Use<Format>Indices() API below
|
|
|
|
/// to supply a sparse format specific indices.
|
|
|
|
/// This API is not suitable for string data. Use CreateSparseTensor() with allocator specified so strings
|
|
|
|
/// can be properly copied into the allocated buffer.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="info">Memory description where the user buffers reside (CPU vs GPU etc)</param>
|
|
|
|
/// <param name="p_data">pointer to the user supplied buffer, use nullptr for fully sparse tensors</param>
|
|
|
|
/// <param name="dense_shape">a would be dense shape of the tensor</param>
|
|
|
|
/// <param name="values_shape">non zero values shape. Use a single 0 shape for fully sparse tensors.</param>
|
|
|
|
/// <param name="type">data type</param>
|
|
|
|
/// <returns>Ort::Value instance containing SparseTensor</returns>
|
|
|
|
static Value CreateSparseTensor(const OrtMemoryInfo* info, void* p_data, const Shape& dense_shape, |
|
|
|
const Shape& values_shape, ONNXTensorElementDataType type); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Supplies COO format specific indices and marks the contained sparse tensor as being a COO format tensor.
|
|
|
|
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
|
|
|
|
/// allocated buffers lifespan must eclipse that of the OrtValue.
|
|
|
|
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="indices_data">pointer to the user allocated buffer with indices. Use nullptr for fully sparse tensors.</param>
|
|
|
|
/// <param name="indices_num">number of indices entries. Use 0 for fully sparse tensors</param>
|
|
|
|
void UseCooIndices(int64_t* indices_data, size_t indices_num); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Supplies CSR format specific indices and marks the contained sparse tensor as being a CSR format tensor.
|
|
|
|
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
|
|
|
|
/// allocated buffers lifespan must eclipse that of the OrtValue.
|
|
|
|
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="inner_data">pointer to the user allocated buffer with inner indices or nullptr for fully sparse tensors</param>
|
|
|
|
/// <param name="inner_num">number of csr inner indices or 0 for fully sparse tensors</param>
|
|
|
|
/// <param name="outer_data">pointer to the user allocated buffer with outer indices or nullptr for fully sparse tensors</param>
|
|
|
|
/// <param name="outer_num">number of csr outer indices or 0 for fully sparse tensors</param>
|
|
|
|
void UseCsrIndices(int64_t* inner_data, size_t inner_num, int64_t* outer_data, size_t outer_num); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Supplies BlockSparse format specific indices and marks the contained sparse tensor as being a BlockSparse format tensor.
|
|
|
|
/// Values are supplied with a CreateSparseTensor() API. The supplied indices are not copied and the user
|
|
|
|
/// allocated buffers lifespan must eclipse that of the OrtValue.
|
|
|
|
/// The location of the indices is assumed to be the same as specified by OrtMemoryInfo argument at the creation time.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="indices_shape">indices shape or a {0} for fully sparse</param>
|
|
|
|
/// <param name="indices_data">user allocated buffer with indices or nullptr for fully spare tensors</param>
|
|
|
|
void UseBlockSparseIndices(const Shape& indices_shape, int32_t* indices_data); |
|
|
|
|
|
|
|
#endif // !defined(DISABLE_SPARSE_TENSORS)
|
|
|
|
|
|
|
|
// \brief Wraps OrtApi::CreateTensorAsOrtValue
|
|
|
|
template <typename T> |
|
|
|
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len); |
|
|
|
// \brief Wraps OrtApi::CreateTensorAsOrtValue
|
|
|
|
static Value CreateTensor(OrtAllocator* allocator, const int64_t* shape, size_t shape_len, ONNXTensorElementDataType type); |
|
|
|
|
|
|
|
#if !defined(DISABLE_SPARSE_TENSORS) |
|
|
|
/// <summary>
|
|
|
|
/// This is a simple forwarding method the below CreateSparseTensor.
|
|
|
|
/// This helps to specify data type enum in terms of C++ data type.
|
|
|
|
/// Use CreateSparseTensor<T>
|
|
|
|
/// </summary>
|
|
|
|
/// <typeparam name="T">numeric data type only. String data enum must be specified explicitly.</typeparam>
|
|
|
|
/// <param name="allocator">allocator to use</param>
|
|
|
|
/// <param name="dense_shape">a would be dense shape of the tensor</param>
|
|
|
|
/// <returns>Ort::Value</returns>
|
|
|
|
template <typename T> |
|
|
|
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// Creates an instance of OrtValue containing sparse tensor. The created instance has no data.
|
|
|
|
/// The data must be supplied by on of the FillSparseTensor<Format>() methods that take both non-zero values
|
|
|
|
/// and indices. The data will be copied into a buffer that would be allocated using the supplied allocator.
|
|
|
|
/// Use this API to create OrtValues that contain sparse tensors with all supported data types including
|
|
|
|
/// strings.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="allocator">allocator to use. The allocator lifespan must eclipse that of the resulting OrtValue</param>
|
|
|
|
/// <param name="dense_shape">a would be dense shape of the tensor</param>
|
|
|
|
/// <param name="type">data type</param>
|
|
|
|
/// <returns>an instance of Ort::Value</returns>
|
|
|
|
static Value CreateSparseTensor(OrtAllocator* allocator, const Shape& dense_shape, ONNXTensorElementDataType type); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
|
|
|
|
/// and copy the values and COO indices into it. If data_mem_info specifies that the data is located
|
|
|
|
/// at difference device than the allocator, a X-device copy will be performed if possible.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="data_mem_info">specified buffer memory description</param>
|
|
|
|
/// <param name="values_param">values buffer information.</param>
|
|
|
|
/// <param name="indices_data">coo indices buffer or nullptr for fully sparse data</param>
|
|
|
|
/// <param name="indices_num">number of COO indices or 0 for fully sparse data</param>
|
|
|
|
void FillSparseTensorCoo(const OrtMemoryInfo* data_mem_info, const OrtSparseValuesParam& values_param, |
|
|
|
const int64_t* indices_data, size_t indices_num); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
|
|
|
|
/// and copy the values and CSR indices into it. If data_mem_info specifies that the data is located
|
|
|
|
/// at difference device than the allocator, a X-device copy will be performed if possible.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="data_mem_info">specified buffer memory description</param>
|
|
|
|
/// <param name="values">values buffer information</param>
|
|
|
|
/// <param name="inner_indices_data">csr inner indices pointer or nullptr for fully sparse tensors</param>
|
|
|
|
/// <param name="inner_indices_num">number of csr inner indices or 0 for fully sparse tensors</param>
|
|
|
|
/// <param name="outer_indices_data">pointer to csr indices data or nullptr for fully sparse tensors</param>
|
|
|
|
/// <param name="outer_indices_num">number of csr outer indices or 0</param>
|
|
|
|
void FillSparseTensorCsr(const OrtMemoryInfo* data_mem_info, |
|
|
|
const OrtSparseValuesParam& values, |
|
|
|
const int64_t* inner_indices_data, size_t inner_indices_num, |
|
|
|
const int64_t* outer_indices_data, size_t outer_indices_num); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API will allocate memory using the allocator instance supplied to the CreateSparseTensor() API
|
|
|
|
/// and copy the values and BlockSparse indices into it. If data_mem_info specifies that the data is located
|
|
|
|
/// at difference device than the allocator, a X-device copy will be performed if possible.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="data_mem_info">specified buffer memory description</param>
|
|
|
|
/// <param name="values">values buffer information</param>
|
|
|
|
/// <param name="indices_shape">indices shape. use {0} for fully sparse tensors</param>
|
|
|
|
/// <param name="indices_data">pointer to indices data or nullptr for fully sparse tensors</param>
|
|
|
|
void FillSparseTensorBlockSparse(const OrtMemoryInfo* data_mem_info, |
|
|
|
const OrtSparseValuesParam& values, |
|
|
|
const Shape& indices_shape, |
|
|
|
const int32_t* indices_data); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API returns the sparse data format this OrtValue holds in a sparse tensor.
|
|
|
|
/// If the sparse tensor was not fully constructed, i.e. Use*() or Fill*() API were not used
|
|
|
|
/// the value returned is ORT_SPARSE_UNDEFINED.
|
|
|
|
/// </summary>
|
|
|
|
/// <returns>Format enum</returns>
|
|
|
|
OrtSparseFormat GetSparseFormat() const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API returns type and shape information for stored non-zero values of the
|
|
|
|
/// sparse tensor. Use GetSparseTensorValues() to obtain values buffer pointer.
|
|
|
|
/// </summary>
|
|
|
|
/// <returns>TensorTypeAndShapeInfo values information</returns>
|
|
|
|
TensorTypeAndShapeInfo GetSparseTensorValuesTypeAndShapeInfo() const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API returns type and shape information for the specified indices. Each supported
|
|
|
|
/// indices have their own enum values even if a give format has more than one kind of indices.
|
|
|
|
/// Use GetSparseTensorIndicesData() to obtain pointer to indices buffer.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="format">enum requested</param>
|
|
|
|
/// <returns>type and shape information</returns>
|
|
|
|
TensorTypeAndShapeInfo GetSparseTensorIndicesTypeShapeInfo(OrtSparseIndicesFormat format) const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API retrieves a pointer to the internal indices buffer. The API merely performs
|
|
|
|
/// a convenience data type casting on the return type pointer. Make sure you are requesting
|
|
|
|
/// the right type, use GetSparseTensorIndicesTypeShapeInfo();
|
|
|
|
/// </summary>
|
|
|
|
/// <typeparam name="T">type to cast to</typeparam>
|
|
|
|
/// <param name="indices_format">requested indices kind</param>
|
|
|
|
/// <param name="num_indices">number of indices entries</param>
|
|
|
|
/// <returns>Pinter to the internal sparse tensor buffer containing indices. Do not free this pointer.</returns>
|
|
|
|
template <typename T> |
|
|
|
const T* GetSparseTensorIndicesData(OrtSparseIndicesFormat indices_format, size_t& num_indices) const; |
|
|
|
|
|
|
|
#endif // !defined(DISABLE_SPARSE_TENSORS)
|
|
|
|
|
|
|
|
static Value CreateMap(Value& keys, Value& values); ///< Wraps OrtApi::CreateValue
|
|
|
|
static Value CreateSequence(std::vector<Value>& values); ///< Wraps OrtApi::CreateValue
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
static Value CreateOpaque(const char* domain, const char* type_name, const T&); ///< Wraps OrtApi::CreateOpaqueValue
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
void GetOpaqueData(const char* domain, const char* type_name, T&) const; ///< Wraps OrtApi::GetOpaqueValue
|
|
|
|
|
|
|
|
explicit Value(std::nullptr_t) {} ///< Create an empty Value object, must be assigned a valid one to be used
|
|
|
|
explicit Value(OrtValue* p) : Base<OrtValue>{p} {} ///< Used for interop with the C API
|
|
|
|
Value(Value&&) = default; |
|
|
|
Value& operator=(Value&&) = default; |
|
|
|
|
|
|
|
bool IsTensor() const; ///< Returns true if Value is a tensor, false for other types like map/sequence/etc
|
|
|
|
bool HasValue() const; /// < Return true if OrtValue contains data and returns false if the OrtValue is a None
|
|
|
|
|
|
|
|
#if !defined(DISABLE_SPARSE_TENSORS) |
|
|
|
/// <summary>
|
|
|
|
/// Returns true if the OrtValue contains a sparse tensor
|
|
|
|
/// </summary>
|
|
|
|
/// <returns></returns>
|
|
|
|
bool IsSparseTensor() const; |
|
|
|
#endif |
|
|
|
|
|
|
|
size_t GetCount() const; // If a non tensor, returns 2 for map and N for sequence, where N is the number of elements
|
|
|
|
Value GetValue(int index, OrtAllocator* allocator) const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// This API returns a full length of string data contained within either a tensor or a sparse Tensor.
|
|
|
|
/// For sparse tensor it returns a full length of stored non-empty strings (values). The API is useful
|
|
|
|
/// for allocating necessary memory and calling GetStringTensorContent().
|
|
|
|
/// </summary>
|
|
|
|
/// <returns>total length of UTF-8 encoded bytes contained. No zero terminators counted.</returns>
|
|
|
|
size_t GetStringTensorDataLength() const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API copies all of the UTF-8 encoded string data contained within a tensor or a sparse tensor
|
|
|
|
/// into a supplied buffer. Use GetStringTensorDataLength() to find out the length of the buffer to allocate.
|
|
|
|
/// The user must also allocate offsets buffer with the number of entries equal to that of the contained
|
|
|
|
/// strings.
|
|
|
|
///
|
|
|
|
/// Strings are always assumed to be on CPU, no X-device copy.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="buffer">user allocated buffer</param>
|
|
|
|
/// <param name="buffer_length">length in bytes of the allocated buffer</param>
|
|
|
|
/// <param name="offsets">a pointer to the offsets user allocated buffer</param>
|
|
|
|
/// <param name="offsets_count">count of offsets, must be equal to the number of strings contained.
|
|
|
|
/// that can be obtained from the shape of the tensor or from GetSparseTensorValuesTypeAndShapeInfo()
|
|
|
|
/// for sparse tensors</param>
|
|
|
|
void GetStringTensorContent(void* buffer, size_t buffer_length, size_t* offsets, size_t offsets_count) const; |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
T* GetTensorMutableData(); ///< Wraps OrtApi::GetTensorMutableData
|
|
|
|
|
|
|
|
template <typename T> |
|
|
|
const T* GetTensorData() const; ///< Wraps OrtApi::GetTensorMutableData
|
|
|
|
|
|
|
|
#if !defined(DISABLE_SPARSE_TENSORS) |
|
|
|
/// <summary>
|
|
|
|
/// The API returns a pointer to an internal buffer of the sparse tensor
|
|
|
|
/// containing non-zero values. The API merely does casting. Make sure you
|
|
|
|
/// are requesting the right data type by calling GetSparseTensorValuesTypeAndShapeInfo()
|
|
|
|
/// first.
|
|
|
|
/// </summary>
|
|
|
|
/// <typeparam name="T">numeric data types only. Use GetStringTensor*() to retrieve strings.</typeparam>
|
|
|
|
/// <returns>a pointer to the internal values buffer. Do not free this pointer.</returns>
|
|
|
|
template <typename T> |
|
|
|
const T* GetSparseTensorValues() const; |
|
|
|
#endif |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
T& At(const std::vector<int64_t>& location); |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API returns type information for data contained in a tensor. For sparse
|
|
|
|
/// tensors it returns type information for contained non-zero values.
|
|
|
|
/// It returns dense shape for sparse tensors.
|
|
|
|
/// </summary>
|
|
|
|
/// <returns>TypeInfo</returns>
|
|
|
|
TypeInfo GetTypeInfo() const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API returns type information for data contained in a tensor. For sparse
|
|
|
|
/// tensors it returns type information for contained non-zero values.
|
|
|
|
/// It returns dense shape for sparse tensors.
|
|
|
|
/// </summary>
|
|
|
|
/// <returns>TensorTypeAndShapeInfo</returns>
|
|
|
|
TensorTypeAndShapeInfo GetTensorTypeAndShapeInfo() const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API returns a byte length of UTF-8 encoded string element
|
|
|
|
/// contained in either a tensor or a spare tensor values.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="element_index"></param>
|
|
|
|
/// <returns>byte length for the specified string element</returns>
|
|
|
|
size_t GetStringTensorElementLength(size_t element_index) const; |
|
|
|
|
|
|
|
/// <summary>
|
|
|
|
/// The API copies UTF-8 encoded bytes for the requested string element
|
|
|
|
/// contained within a tensor or a sparse tensor into a provided buffer.
|
|
|
|
/// Use GetStringTensorElementLength() to obtain the length of the buffer to allocate.
|
|
|
|
/// </summary>
|
|
|
|
/// <param name="buffer_length"></param>
|
|
|
|
/// <param name="element_index"></param>
|
|
|
|
/// <param name="buffer"></param>
|
|
|
|
void GetStringTensorElement(size_t buffer_length, size_t element_index, void* buffer) const; |
|
|
|
|
|
|
|
void FillStringTensor(const char* const* s, size_t s_len); |
|
|
|
void FillStringTensorElement(const char* s, size_t index); |
|
|
|
}; |
|
|
|
|
|
|
|
// Represents native memory allocation
|
|
|
|
struct MemoryAllocation { |
|
|
|
MemoryAllocation(OrtAllocator* allocator, void* p, size_t size); |
|
|
|
~MemoryAllocation(); |
|
|
|
MemoryAllocation(const MemoryAllocation&) = delete; |
|
|
|
MemoryAllocation& operator=(const MemoryAllocation&) = delete; |
|
|
|
MemoryAllocation(MemoryAllocation&&) noexcept; |
|
|
|
MemoryAllocation& operator=(MemoryAllocation&&) noexcept; |
|
|
|
|
|
|
|
void* get() { return p_; } |
|
|
|
size_t size() const { return size_; } |
|
|
|
|
|
|
|
private: |
|
|
|
OrtAllocator* allocator_; |
|
|
|
void* p_; |
|
|
|
size_t size_; |
|
|
|
}; |
|
|
|
|
|
|
|
struct AllocatorWithDefaultOptions { |
|
|
|
AllocatorWithDefaultOptions(); |
|
|
|
|
|
|
|
operator OrtAllocator*() { return p_; } |
|
|
|
operator const OrtAllocator*() const { return p_; } |
|
|
|
|
|
|
|
void* Alloc(size_t size); |
|
|
|
// The return value will own the allocation
|
|
|
|
MemoryAllocation GetAllocation(size_t size); |
|
|
|
void Free(void* p); |
|
|
|
|
|
|
|
const OrtMemoryInfo* GetInfo() const; |
|
|
|
|
|
|
|
private: |
|
|
|
OrtAllocator* p_{}; |
|
|
|
}; |
|
|
|
|
|
|
|
struct MemoryInfo : Base<OrtMemoryInfo> { |
|
|
|
static MemoryInfo CreateCpu(OrtAllocatorType type, OrtMemType mem_type1); |
|
|
|
|
|
|
|
explicit MemoryInfo(std::nullptr_t) {} |
|
|
|
explicit MemoryInfo(OrtMemoryInfo* p) : Base<OrtMemoryInfo>{p} {} ///< Used for interop with the C API
|
|
|
|
MemoryInfo(const char* name, OrtAllocatorType type, int id, OrtMemType mem_type); |
|
|
|
|
|
|
|
std::string GetAllocatorName() const; |
|
|
|
OrtAllocatorType GetAllocatorType() const; |
|
|
|
int GetDeviceId() const; |
|
|
|
OrtMemType GetMemoryType() const; |
|
|
|
|
|
|
|
bool operator==(const MemoryInfo& o) const; |
|
|
|
}; |
|
|
|
|
|
|
|
struct Allocator : public Base<OrtAllocator> { |
|
|
|
Allocator(const Session& session, const MemoryInfo&); |
|
|
|
|
|
|
|
void* Alloc(size_t size) const; |
|
|
|
// The return value will own the allocation
|
|
|
|
MemoryAllocation GetAllocation(size_t size); |
|
|
|
void Free(void* p) const; |
|
|
|
Unowned<const MemoryInfo> GetInfo() const; |
|
|
|
}; |
|
|
|
|
|
|
|
struct IoBinding : public Base<OrtIoBinding> { |
|
|
|
explicit IoBinding(Session& session); |
|
|
|
void BindInput(const char* name, const Value&); |
|
|
|
void BindOutput(const char* name, const Value&); |
|
|
|
void BindOutput(const char* name, const MemoryInfo&); |
|
|
|
std::vector<std::string> GetOutputNames() const; |
|
|
|
std::vector<std::string> GetOutputNames(Allocator&) const; |
|
|
|
std::vector<Value> GetOutputValues() const; |
|
|
|
std::vector<Value> GetOutputValues(Allocator&) const; |
|
|
|
void ClearBoundInputs(); |
|
|
|
void ClearBoundOutputs(); |
|
|
|
void SynchronizeInputs(); |
|
|
|
void SynchronizeOutputs(); |
|
|
|
|
|
|
|
private: |
|
|
|
std::vector<std::string> GetOutputNamesHelper(OrtAllocator*) const; |
|
|
|
std::vector<Value> GetOutputValuesHelper(OrtAllocator*) const; |
|
|
|
}; |
|
|
|
|
|
|
|
/*! \struct Ort::ArenaCfg
|
|
|
|
* \brief it is a structure that represents the configuration of an arena based allocator |
|
|
|
* \details Please see docs/C_API.md for details |
|
|
|
*/ |
|
|
|
struct ArenaCfg : Base<OrtArenaCfg> { |
|
|
|
explicit ArenaCfg(std::nullptr_t) {} ///< Create an empty ArenaCfg object, must be assigned a valid one to be used
|
|
|
|
/**
|
|
|
|
* Wraps OrtApi::CreateArenaCfg |
|
|
|
* \param max_mem - use 0 to allow ORT to choose the default |
|
|
|
* \param arena_extend_strategy - use -1 to allow ORT to choose the default, 0 = kNextPowerOfTwo, 1 = kSameAsRequested |
|
|
|
* \param initial_chunk_size_bytes - use -1 to allow ORT to choose the default |
|
|
|
* \param max_dead_bytes_per_chunk - use -1 to allow ORT to choose the default |
|
|
|
* See docs/C_API.md for details on what the following parameters mean and how to choose these values |
|
|
|
*/ |
|
|
|
ArenaCfg(size_t max_mem, int arena_extend_strategy, int initial_chunk_size_bytes, int max_dead_bytes_per_chunk); |
|
|
|
}; |
|
|
|
|
|
|
|
//
|
|
|
|
// Custom OPs (only needed to implement custom OPs)
|
|
|
|
//
|
|
|
|
|
|
|
|
struct CustomOpApi { |
|
|
|
CustomOpApi(const OrtApi& api) : api_(api) {} |
|
|
|
|
|
|
|
template <typename T> // T is only implemented for std::vector<float>, std::vector<int64_t>, float, int64_t, and string
|
|
|
|
T KernelInfoGetAttribute(_In_ const OrtKernelInfo* info, _In_ const char* name); |
|
|
|
|
|
|
|
OrtTensorTypeAndShapeInfo* GetTensorTypeAndShape(_In_ const OrtValue* value); |
|
|
|
size_t GetTensorShapeElementCount(_In_ const OrtTensorTypeAndShapeInfo* info); |
|
|
|
ONNXTensorElementDataType GetTensorElementType(const OrtTensorTypeAndShapeInfo* info); |
|
|
|
size_t GetDimensionsCount(_In_ const OrtTensorTypeAndShapeInfo* info); |
|
|
|
void GetDimensions(_In_ const OrtTensorTypeAndShapeInfo* info, _Out_ int64_t* dim_values, size_t dim_values_length); |
|
|
|
void SetDimensions(OrtTensorTypeAndShapeInfo* info, _In_ const int64_t* dim_values, size_t dim_count); |
|
|
|
|
|
|
|
template <typename T> |
|
|
|
T* GetTensorMutableData(_Inout_ OrtValue* value); |
|
|
|
template <typename T> |
|
|
|
const T* GetTensorData(_Inout_ const OrtValue* value); |
|
|
|
|
|
|
|
const OrtMemoryInfo* GetTensorMemoryInfo(_In_ const OrtValue* value); |
|
|
|
|
|
|
|
std::vector<int64_t> GetTensorShape(const OrtTensorTypeAndShapeInfo* info); |
|
|
|
void ReleaseTensorTypeAndShapeInfo(OrtTensorTypeAndShapeInfo* input); |
|
|
|
size_t KernelContext_GetInputCount(const OrtKernelContext* context); |
|
|
|
const OrtValue* KernelContext_GetInput(const OrtKernelContext* context, _In_ size_t index); |
|
|
|
size_t KernelContext_GetOutputCount(const OrtKernelContext* context); |
|
|
|
OrtValue* KernelContext_GetOutput(OrtKernelContext* context, _In_ size_t index, _In_ const int64_t* dim_values, size_t dim_count); |
|
|
|
void* KernelContext_GetGPUComputeStream(const OrtKernelContext* context); |
|
|
|
|
|
|
|
void ThrowOnError(OrtStatus* result); |
|
|
|
|
|
|
|
private: |
|
|
|
const OrtApi& api_; |
|
|
|
}; |
|
|
|
|
|
|
|
template <typename TOp, typename TKernel> |
|
|
|
struct CustomOpBase : OrtCustomOp { |
|
|
|
CustomOpBase() { |
|
|
|
OrtCustomOp::version = ORT_API_VERSION; |
|
|
|
OrtCustomOp::CreateKernel = [](const OrtCustomOp* this_, const OrtApi* api, const OrtKernelInfo* info) { return static_cast<const TOp*>(this_)->CreateKernel(*api, info); }; |
|
|
|
OrtCustomOp::GetName = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetName(); }; |
|
|
|
|
|
|
|
OrtCustomOp::GetExecutionProviderType = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetExecutionProviderType(); }; |
|
|
|
|
|
|
|
OrtCustomOp::GetInputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetInputTypeCount(); }; |
|
|
|
OrtCustomOp::GetInputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputType(index); }; |
|
|
|
|
|
|
|
OrtCustomOp::GetOutputTypeCount = [](const OrtCustomOp* this_) { return static_cast<const TOp*>(this_)->GetOutputTypeCount(); }; |
|
|
|
OrtCustomOp::GetOutputType = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputType(index); }; |
|
|
|
|
|
|
|
OrtCustomOp::KernelCompute = [](void* op_kernel, OrtKernelContext* context) { static_cast<TKernel*>(op_kernel)->Compute(context); }; |
|
|
|
OrtCustomOp::KernelDestroy = [](void* op_kernel) { delete static_cast<TKernel*>(op_kernel); }; |
|
|
|
|
|
|
|
OrtCustomOp::GetInputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetInputCharacteristic(index); }; |
|
|
|
OrtCustomOp::GetOutputCharacteristic = [](const OrtCustomOp* this_, size_t index) { return static_cast<const TOp*>(this_)->GetOutputCharacteristic(index); }; |
|
|
|
} |
|
|
|
|
|
|
|
// Default implementation of GetExecutionProviderType that returns nullptr to default to the CPU provider
|
|
|
|
const char* GetExecutionProviderType() const { return nullptr; } |
|
|
|
|
|
|
|
// Default implementations of GetInputCharacteristic() and GetOutputCharacteristic() below
|
|
|
|
// (inputs and outputs are required by default)
|
|
|
|
OrtCustomOpInputOutputCharacteristic GetInputCharacteristic(size_t /*index*/) const { |
|
|
|
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED; |
|
|
|
} |
|
|
|
|
|
|
|
OrtCustomOpInputOutputCharacteristic GetOutputCharacteristic(size_t /*index*/) const { |
|
|
|
return OrtCustomOpInputOutputCharacteristic::INPUT_OUTPUT_REQUIRED; |
|
|
|
} |
|
|
|
}; |
|
|
|
|
|
|
|
} // namespace Ort
|
|
|
|
|
|
|
|
#include "onnxruntime_cxx_inline.h" |