You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
514 lines
19 KiB
514 lines
19 KiB
2 years ago
|
from abc import ABC, abstractmethod
|
||
|
from dataclasses import dataclass
|
||
|
from functools import partial
|
||
|
from typing import Any, Dict, List, Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from shap_e.models.nn.utils import sample_pmf
|
||
|
from shap_e.models.volume import Volume, VolumeRange
|
||
|
from shap_e.util.collections import AttrDict
|
||
|
|
||
|
from .model import NeRFModel, Query
|
||
|
|
||
|
|
||
|
def render_rays(
|
||
|
rays: torch.Tensor,
|
||
|
parts: List["RayVolumeIntegral"],
|
||
|
void_model: NeRFModel,
|
||
|
shared: bool = False,
|
||
|
prev_raw_outputs: Optional[List[AttrDict]] = None,
|
||
|
render_with_direction: bool = True,
|
||
|
importance_sampling_options: Optional[Dict[str, Any]] = None,
|
||
|
) -> Tuple["RayVolumeIntegralResults", List["RaySampler"], List[AttrDict]]:
|
||
|
"""
|
||
|
Perform volumetric rendering over a partition of possible t's in the union
|
||
|
of rendering volumes (written below with some abuse of notations)
|
||
|
|
||
|
C(r) := sum(
|
||
|
transmittance(t[i]) *
|
||
|
integrate(
|
||
|
lambda t: density(t) * channels(t) * transmittance(t),
|
||
|
[t[i], t[i + 1]],
|
||
|
)
|
||
|
for i in range(len(parts))
|
||
|
) + transmittance(t[-1]) * void_model(t[-1]).channels
|
||
|
|
||
|
where
|
||
|
|
||
|
1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the
|
||
|
probability of light passing through the volume specified by [t[0], s].
|
||
|
(transmittance of 1 means light can pass freely)
|
||
|
2) density and channels are obtained by evaluating the appropriate
|
||
|
part.model at time t.
|
||
|
3) [t[i], t[i + 1]] is defined as the range of t where the ray intersects
|
||
|
(parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface
|
||
|
of the shell (if bounded). If the ray does not intersect, the integral over
|
||
|
this segment is evaluated as 0 and transmittance(t[i + 1]) :=
|
||
|
transmittance(t[i]).
|
||
|
4) The last term is integration to infinity (e.g. [t[-1], math.inf]) that
|
||
|
is evaluated by the void_model (i.e. we consider this space to be empty).
|
||
|
|
||
|
:param rays: [batch_size x ... x 2 x 3] origin and direction.
|
||
|
:param parts: disjoint volume integrals.
|
||
|
:param void_model: use this model to integrate over the empty space
|
||
|
:param shared: All RayVolumeIntegrals are calculated with the same model.
|
||
|
:param prev_raw_outputs: Raw outputs from the previous rendering step
|
||
|
|
||
|
:return: A tuple of
|
||
|
- AttrDict containing the rendered `channels`, `distances`, and the `aux_losses`
|
||
|
- A list of importance samplers for additional fine-grained rendering
|
||
|
- A list of raw output for each interval
|
||
|
"""
|
||
|
if importance_sampling_options is None:
|
||
|
importance_sampling_options = {}
|
||
|
|
||
|
origin, direc = rays[..., 0, :], rays[..., 1, :]
|
||
|
|
||
|
if prev_raw_outputs is None:
|
||
|
prev_raw_outputs = [None] * len(parts)
|
||
|
|
||
|
samplers = []
|
||
|
raw_outputs = []
|
||
|
t0 = None
|
||
|
results = None
|
||
|
|
||
|
for part_i, prev_raw_i in zip(parts, prev_raw_outputs):
|
||
|
|
||
|
# Integrate over [t[i], t[i + 1]]
|
||
|
results_i = part_i.render_rays(
|
||
|
origin,
|
||
|
direc,
|
||
|
t0=t0,
|
||
|
prev_raw=prev_raw_i,
|
||
|
shared=shared,
|
||
|
render_with_direction=render_with_direction,
|
||
|
)
|
||
|
|
||
|
# Create an importance sampler for (optional) fine rendering
|
||
|
samplers.append(
|
||
|
ImportanceRaySampler(
|
||
|
results_i.volume_range, results_i.raw, **importance_sampling_options
|
||
|
)
|
||
|
)
|
||
|
raw_outputs.append(results_i.raw)
|
||
|
|
||
|
# Pass t[i + 1] as the start of integration for the next interval.
|
||
|
t0 = results_i.volume_range.next_t0()
|
||
|
|
||
|
# Combine the results from [t[0], t[i]] and [t[i], t[i+1]]
|
||
|
results = results_i if results is None else results.combine(results_i)
|
||
|
|
||
|
# While integrating out [t[-1], math.inf] is the correct thing to do, this
|
||
|
# erases a lot of useful information. Also, void_model is meant to predict
|
||
|
# the channels at t=math.inf.
|
||
|
|
||
|
# # Add the void background over [t[-1], math.inf] to complete integration.
|
||
|
# results = results.combine(
|
||
|
# RayVolumeIntegralResults(
|
||
|
# output=AttrDict(
|
||
|
# channels=void_model(origin, direc),
|
||
|
# distances=torch.zeros_like(t0),
|
||
|
# aux_losses=AttrDict(),
|
||
|
# ),
|
||
|
# volume_range=VolumeRange(
|
||
|
# t0=t0,
|
||
|
# t1=torch.full_like(t0, math.inf),
|
||
|
# intersected=torch.full_like(results.volume_range.intersected, True),
|
||
|
# ),
|
||
|
# # Void space extends to infinity. It is assumed that no light
|
||
|
# # passes beyond the void.
|
||
|
# transmittance=torch.zeros_like(results_i.transmittance),
|
||
|
# )
|
||
|
# )
|
||
|
|
||
|
results.output.channels = results.output.channels + results.transmittance * void_model(
|
||
|
Query(origin, direc)
|
||
|
)
|
||
|
|
||
|
return results, samplers, raw_outputs
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class RayVolumeIntegralResults:
|
||
|
"""
|
||
|
Stores the relevant state and results of
|
||
|
|
||
|
integrate(
|
||
|
lambda t: density(t) * channels(t) * transmittance(t),
|
||
|
[t0, t1],
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
# Rendered output and auxiliary losses
|
||
|
# output.channels has shape [batch_size, *inner_shape, n_channels]
|
||
|
output: AttrDict
|
||
|
|
||
|
"""
|
||
|
Optional values
|
||
|
"""
|
||
|
|
||
|
# Raw values contain the sampled `ts`, `density`, `channels`, etc.
|
||
|
raw: Optional[AttrDict] = None
|
||
|
|
||
|
# Integration
|
||
|
volume_range: Optional[VolumeRange] = None
|
||
|
|
||
|
# If a ray intersects, the transmittance from t0 to t1 (e.g. the
|
||
|
# probability that the ray passes through this volume).
|
||
|
# has shape [batch_size, *inner_shape, 1]
|
||
|
transmittance: Optional[torch.Tensor] = None
|
||
|
|
||
|
def combine(self, cur: "RayVolumeIntegralResults") -> "RayVolumeIntegralResults":
|
||
|
"""
|
||
|
Combines the integration results of `self` over [t0, t1] and
|
||
|
`cur` over [t1, t2] to produce a new set of results over [t0, t2] by
|
||
|
using a similar equation to (4) in NeRF++:
|
||
|
|
||
|
integrate(
|
||
|
lambda t: density(t) * channels(t) * transmittance(t),
|
||
|
[t0, t2]
|
||
|
)
|
||
|
|
||
|
= integrate(
|
||
|
lambda t: density(t) * channels(t) * transmittance(t),
|
||
|
[t0, t1]
|
||
|
) + transmittance(t1) * integrate(
|
||
|
lambda t: density(t) * channels(t) * transmittance(t),
|
||
|
[t1, t2]
|
||
|
)
|
||
|
"""
|
||
|
assert torch.allclose(self.volume_range.next_t0(), cur.volume_range.t0)
|
||
|
|
||
|
def _combine_fn(
|
||
|
prev_val: Optional[torch.Tensor],
|
||
|
cur_val: Optional[torch.Tensor],
|
||
|
*,
|
||
|
prev_transmittance: torch.Tensor,
|
||
|
):
|
||
|
assert prev_val is not None
|
||
|
if cur_val is None:
|
||
|
# cur_output.aux_losses are empty for the void_model.
|
||
|
return prev_val
|
||
|
return prev_val + prev_transmittance * cur_val
|
||
|
|
||
|
output = self.output.combine(
|
||
|
cur.output, combine_fn=partial(_combine_fn, prev_transmittance=self.transmittance)
|
||
|
)
|
||
|
|
||
|
combined = RayVolumeIntegralResults(
|
||
|
output=output,
|
||
|
volume_range=self.volume_range.extend(cur.volume_range),
|
||
|
transmittance=self.transmittance * cur.transmittance,
|
||
|
)
|
||
|
return combined
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class RayVolumeIntegral:
|
||
|
model: NeRFModel
|
||
|
volume: Volume
|
||
|
sampler: "RaySampler"
|
||
|
n_samples: int
|
||
|
|
||
|
def render_rays(
|
||
|
self,
|
||
|
origin: torch.Tensor,
|
||
|
direction: torch.Tensor,
|
||
|
t0: Optional[torch.Tensor] = None,
|
||
|
prev_raw: Optional[AttrDict] = None,
|
||
|
shared: bool = False,
|
||
|
render_with_direction: bool = True,
|
||
|
) -> "RayVolumeIntegralResults":
|
||
|
"""
|
||
|
Perform volumetric rendering over the given volume.
|
||
|
|
||
|
:param position: [batch_size, *shape, 3]
|
||
|
:param direction: [batch_size, *shape, 3]
|
||
|
:param t0: Optional [batch_size, *shape, 1]
|
||
|
:param prev_raw: the raw outputs when using multiple levels with this model.
|
||
|
:param shared: means the same model is used for all RayVolumeIntegral's
|
||
|
:param render_with_direction: use the incoming ray direction when querying the model.
|
||
|
|
||
|
:return: RayVolumeIntegralResults
|
||
|
"""
|
||
|
# 1. Intersect the rays with the current volume and sample ts to
|
||
|
# integrate along.
|
||
|
vrange = self.volume.intersect(origin, direction, t0_lower=t0)
|
||
|
ts = self.sampler.sample(vrange.t0, vrange.t1, self.n_samples)
|
||
|
|
||
|
if prev_raw is not None and not shared:
|
||
|
# Append the previous ts now before fprop because previous
|
||
|
# rendering used a different model and we can't reuse the output.
|
||
|
ts = torch.sort(torch.cat([ts, prev_raw.ts], dim=-2), dim=-2).values
|
||
|
|
||
|
# Shape sanity checks
|
||
|
batch_size, *_shape, _t0_dim = vrange.t0.shape
|
||
|
_, *ts_shape, _ts_dim = ts.shape
|
||
|
|
||
|
# 2. Get the points along the ray and query the model
|
||
|
directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3])
|
||
|
positions = origin.unsqueeze(-2) + ts * directions
|
||
|
|
||
|
optional_directions = directions if render_with_direction else None
|
||
|
mids = (ts[..., 1:, :] + ts[..., :-1, :]) / 2
|
||
|
raw = self.model(
|
||
|
Query(
|
||
|
position=positions,
|
||
|
direction=optional_directions,
|
||
|
t_min=torch.cat([vrange.t0[..., None, :], mids], dim=-2),
|
||
|
t_max=torch.cat([mids, vrange.t1[..., None, :]], dim=-2),
|
||
|
)
|
||
|
)
|
||
|
raw.ts = ts
|
||
|
|
||
|
if prev_raw is not None and shared:
|
||
|
# We can append the additional queries to previous raw outputs
|
||
|
# before integration
|
||
|
copy = prev_raw.copy()
|
||
|
result = torch.sort(torch.cat([raw.pop("ts"), copy.pop("ts")], dim=-2), dim=-2)
|
||
|
merge_results = partial(self._merge_results, dim=-2, indices=result.indices)
|
||
|
raw = raw.combine(copy, merge_results)
|
||
|
raw.ts = result.values
|
||
|
|
||
|
# 3. Integrate the raw results
|
||
|
output, transmittance = self.integrate_samples(vrange, raw)
|
||
|
|
||
|
# 4. Clean up results that do not intersect with the volume.
|
||
|
transmittance = torch.where(
|
||
|
vrange.intersected, transmittance, torch.ones_like(transmittance)
|
||
|
)
|
||
|
|
||
|
def _mask_fn(_key: str, tensor: torch.Tensor):
|
||
|
return torch.where(vrange.intersected, tensor, torch.zeros_like(tensor))
|
||
|
|
||
|
def _is_tensor(_key: str, value: Any):
|
||
|
return isinstance(value, torch.Tensor)
|
||
|
|
||
|
output = output.map(map_fn=_mask_fn, should_map=_is_tensor)
|
||
|
|
||
|
return RayVolumeIntegralResults(
|
||
|
output=output,
|
||
|
raw=raw,
|
||
|
volume_range=vrange,
|
||
|
transmittance=transmittance,
|
||
|
)
|
||
|
|
||
|
def integrate_samples(
|
||
|
self,
|
||
|
volume_range: VolumeRange,
|
||
|
raw: AttrDict,
|
||
|
) -> Tuple[AttrDict, torch.Tensor]:
|
||
|
"""
|
||
|
Integrate the raw.channels along with other aux_losses and values to
|
||
|
produce the final output dictionary containing rendered `channels`,
|
||
|
estimated `distances` and `aux_losses`.
|
||
|
|
||
|
:param volume_range: Specifies the integral range [t0, t1]
|
||
|
:param raw: Contains a dict of function evaluations at ts. Should have
|
||
|
|
||
|
density: torch.Tensor [batch_size, *shape, n_samples, 1]
|
||
|
channels: torch.Tensor [batch_size, *shape, n_samples, n_channels]
|
||
|
aux_losses: {key: torch.Tensor [batch_size, *shape, n_samples, 1] for each key}
|
||
|
no_weight_grad_aux_losses: an optional set of losses for which the weights
|
||
|
should be detached before integration.
|
||
|
|
||
|
after the call, integrate_samples populates some intermediate calculations
|
||
|
for later use like
|
||
|
|
||
|
weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density *
|
||
|
transmittance)[i] weight for each rgb output at [..., i, :].
|
||
|
:returns: a tuple of (
|
||
|
a dictionary of rendered outputs and aux_losses,
|
||
|
transmittance of this volume,
|
||
|
)
|
||
|
"""
|
||
|
|
||
|
# 1. Calculate the weights
|
||
|
_, _, dt = volume_range.partition(raw.ts)
|
||
|
ddensity = raw.density * dt
|
||
|
|
||
|
mass = torch.cumsum(ddensity, dim=-2)
|
||
|
transmittance = torch.exp(-mass[..., -1, :])
|
||
|
|
||
|
alphas = 1.0 - torch.exp(-ddensity)
|
||
|
Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2))
|
||
|
# This is the probability of light hitting and reflecting off of
|
||
|
# something at depth [..., i, :].
|
||
|
weights = alphas * Ts
|
||
|
|
||
|
# 2. Integrate all results
|
||
|
def _integrate(key: str, samples: torch.Tensor, weights: torch.Tensor):
|
||
|
if key == "density":
|
||
|
# Omit integrating the density, because we don't need it
|
||
|
return None
|
||
|
return torch.sum(samples * weights, dim=-2)
|
||
|
|
||
|
def _is_tensor(_key: str, value: Any):
|
||
|
return isinstance(value, torch.Tensor)
|
||
|
|
||
|
if raw.no_weight_grad_aux_losses:
|
||
|
extra_aux_losses = raw.no_weight_grad_aux_losses.map(
|
||
|
partial(_integrate, weights=weights.detach()), should_map=_is_tensor
|
||
|
)
|
||
|
else:
|
||
|
extra_aux_losses = {}
|
||
|
output = raw.map(partial(_integrate, weights=weights), should_map=_is_tensor)
|
||
|
if "no_weight_grad_aux_losses" in output:
|
||
|
del output["no_weight_grad_aux_losses"]
|
||
|
output.aux_losses.update(extra_aux_losses)
|
||
|
|
||
|
# Integrating the ts yields the distance away from the origin; rename the variable.
|
||
|
output.distances = output.ts
|
||
|
del output["ts"]
|
||
|
del output["density"]
|
||
|
|
||
|
assert output.distances.shape == (*output.channels.shape[:-1], 1)
|
||
|
assert output.channels.shape[:-1] == raw.channels.shape[:-2]
|
||
|
assert output.channels.shape[-1] == raw.channels.shape[-1]
|
||
|
|
||
|
# 3. Reduce loss
|
||
|
def _reduce_loss(_key: str, loss: torch.Tensor):
|
||
|
return loss.view(loss.shape[0], -1).sum(dim=-1)
|
||
|
|
||
|
# 4. Store other useful calculations
|
||
|
raw.weights = weights
|
||
|
|
||
|
output.aux_losses = output.aux_losses.map(_reduce_loss)
|
||
|
|
||
|
return output, transmittance
|
||
|
|
||
|
def _merge_results(
|
||
|
self, a: Optional[torch.Tensor], b: torch.Tensor, dim: int, indices: torch.Tensor
|
||
|
):
|
||
|
"""
|
||
|
:param a: [..., n_a, ...]. The other dictionary containing the b's may
|
||
|
contain extra tensors from earlier calculations, so a can be None.
|
||
|
:param b: [..., n_b, ...]
|
||
|
:param dim: dimension to merge
|
||
|
:param indices: how the merged results should be sorted at the end
|
||
|
:return: a concatted and sorted tensor of size [..., n_a + n_b, ...]
|
||
|
"""
|
||
|
if a is None:
|
||
|
return None
|
||
|
|
||
|
merged = torch.cat([a, b], dim=dim)
|
||
|
return torch.gather(merged, dim=dim, index=torch.broadcast_to(indices, merged.shape))
|
||
|
|
||
|
|
||
|
class RaySampler(ABC):
|
||
|
@abstractmethod
|
||
|
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
|
||
|
"""
|
||
|
:param t0: start time has shape [batch_size, *shape, 1]
|
||
|
:param t1: finish time has shape [batch_size, *shape, 1]
|
||
|
:param n_samples: number of ts to sample
|
||
|
:return: sampled ts of shape [batch_size, *shape, n_samples, 1]
|
||
|
"""
|
||
|
|
||
|
|
||
|
class StratifiedRaySampler(RaySampler):
|
||
|
"""
|
||
|
Instead of fixed intervals, a sample is drawn uniformly at random from each
|
||
|
interval.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, depth_mode: str = "linear"):
|
||
|
"""
|
||
|
:param depth_mode: linear samples ts linearly in depth. harmonic ensures
|
||
|
closer points are sampled more densely.
|
||
|
"""
|
||
|
self.depth_mode = depth_mode
|
||
|
assert self.depth_mode in ("linear", "geometric", "harmonic")
|
||
|
|
||
|
def sample(
|
||
|
self,
|
||
|
t0: torch.Tensor,
|
||
|
t1: torch.Tensor,
|
||
|
n_samples: int,
|
||
|
epsilon: float = 1e-3,
|
||
|
) -> torch.Tensor:
|
||
|
"""
|
||
|
:param t0: start time has shape [batch_size, *shape, 1]
|
||
|
:param t1: finish time has shape [batch_size, *shape, 1]
|
||
|
:param n_samples: number of ts to sample
|
||
|
:return: sampled ts of shape [batch_size, *shape, n_samples, 1]
|
||
|
"""
|
||
|
ones = [1] * (len(t0.shape) - 1)
|
||
|
ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device)
|
||
|
|
||
|
if self.depth_mode == "linear":
|
||
|
ts = t0 * (1.0 - ts) + t1 * ts
|
||
|
elif self.depth_mode == "geometric":
|
||
|
ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp()
|
||
|
elif self.depth_mode == "harmonic":
|
||
|
# The original NeRF recommends this interpolation scheme for
|
||
|
# spherical scenes, but there could be some weird edge cases when
|
||
|
# the observer crosses from the inner to outer volume.
|
||
|
ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts)
|
||
|
|
||
|
mids = 0.5 * (ts[..., 1:] + ts[..., :-1])
|
||
|
upper = torch.cat([mids, t1], dim=-1)
|
||
|
lower = torch.cat([t0, mids], dim=-1)
|
||
|
t_rand = torch.rand_like(ts)
|
||
|
|
||
|
ts = lower + (upper - lower) * t_rand
|
||
|
return ts.unsqueeze(-1)
|
||
|
|
||
|
|
||
|
class ImportanceRaySampler(RaySampler):
|
||
|
"""
|
||
|
Given the initial estimate of densities, this samples more from
|
||
|
regions/bins expected to have objects.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, volume_range: VolumeRange, raw: AttrDict, blur_pool: bool = False, alpha: float = 1e-5
|
||
|
):
|
||
|
"""
|
||
|
:param volume_range: the range in which a ray intersects the given volume.
|
||
|
:param raw: dictionary of raw outputs from the NeRF models of shape
|
||
|
[batch_size, *shape, n_coarse_samples, 1]. Should at least contain
|
||
|
|
||
|
:param ts: earlier samples from the coarse rendering step
|
||
|
:param weights: discretized version of density * transmittance
|
||
|
:param blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF.
|
||
|
:param alpha: small value to add to weights.
|
||
|
"""
|
||
|
self.volume_range = volume_range
|
||
|
self.ts = raw.ts.clone().detach()
|
||
|
self.weights = raw.weights.clone().detach()
|
||
|
self.blur_pool = blur_pool
|
||
|
self.alpha = alpha
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
|
||
|
"""
|
||
|
:param t0: start time has shape [batch_size, *shape, 1]
|
||
|
:param t1: finish time has shape [batch_size, *shape, 1]
|
||
|
:param n_samples: number of ts to sample
|
||
|
:return: sampled ts of shape [batch_size, *shape, n_samples, 1]
|
||
|
"""
|
||
|
lower, upper, _ = self.volume_range.partition(self.ts)
|
||
|
|
||
|
batch_size, *shape, n_coarse_samples, _ = self.ts.shape
|
||
|
|
||
|
weights = self.weights
|
||
|
if self.blur_pool:
|
||
|
padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2)
|
||
|
maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :])
|
||
|
weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :])
|
||
|
weights = weights + self.alpha
|
||
|
pmf = weights / weights.sum(dim=-2, keepdim=True)
|
||
|
inds = sample_pmf(pmf, n_samples)
|
||
|
assert inds.shape == (batch_size, *shape, n_samples, 1)
|
||
|
assert (inds >= 0).all() and (inds < n_coarse_samples).all()
|
||
|
|
||
|
t_rand = torch.rand(inds.shape, device=inds.device)
|
||
|
lower_ = torch.gather(lower, -2, inds)
|
||
|
upper_ = torch.gather(upper, -2, inds)
|
||
|
|
||
|
ts = lower_ + (upper_ - lower_) * t_rand
|
||
|
ts = torch.sort(ts, dim=-2).values
|
||
|
return ts
|