a fork of shap-e for gc
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

513 lines
19 KiB

from abc import ABC, abstractmethod
from dataclasses import dataclass
from functools import partial
from typing import Any, Dict, List, Optional, Tuple
import torch
from shap_e.models.nn.utils import sample_pmf
from shap_e.models.volume import Volume, VolumeRange
from shap_e.util.collections import AttrDict
from .model import NeRFModel, Query
def render_rays(
rays: torch.Tensor,
parts: List["RayVolumeIntegral"],
void_model: NeRFModel,
shared: bool = False,
prev_raw_outputs: Optional[List[AttrDict]] = None,
render_with_direction: bool = True,
importance_sampling_options: Optional[Dict[str, Any]] = None,
) -> Tuple["RayVolumeIntegralResults", List["RaySampler"], List[AttrDict]]:
"""
Perform volumetric rendering over a partition of possible t's in the union
of rendering volumes (written below with some abuse of notations)
C(r) := sum(
transmittance(t[i]) *
integrate(
lambda t: density(t) * channels(t) * transmittance(t),
[t[i], t[i + 1]],
)
for i in range(len(parts))
) + transmittance(t[-1]) * void_model(t[-1]).channels
where
1) transmittance(s) := exp(-integrate(density, [t[0], s])) calculates the
probability of light passing through the volume specified by [t[0], s].
(transmittance of 1 means light can pass freely)
2) density and channels are obtained by evaluating the appropriate
part.model at time t.
3) [t[i], t[i + 1]] is defined as the range of t where the ray intersects
(parts[i].volume \\ union(part.volume for part in parts[:i])) at the surface
of the shell (if bounded). If the ray does not intersect, the integral over
this segment is evaluated as 0 and transmittance(t[i + 1]) :=
transmittance(t[i]).
4) The last term is integration to infinity (e.g. [t[-1], math.inf]) that
is evaluated by the void_model (i.e. we consider this space to be empty).
:param rays: [batch_size x ... x 2 x 3] origin and direction.
:param parts: disjoint volume integrals.
:param void_model: use this model to integrate over the empty space
:param shared: All RayVolumeIntegrals are calculated with the same model.
:param prev_raw_outputs: Raw outputs from the previous rendering step
:return: A tuple of
- AttrDict containing the rendered `channels`, `distances`, and the `aux_losses`
- A list of importance samplers for additional fine-grained rendering
- A list of raw output for each interval
"""
if importance_sampling_options is None:
importance_sampling_options = {}
origin, direc = rays[..., 0, :], rays[..., 1, :]
if prev_raw_outputs is None:
prev_raw_outputs = [None] * len(parts)
samplers = []
raw_outputs = []
t0 = None
results = None
for part_i, prev_raw_i in zip(parts, prev_raw_outputs):
# Integrate over [t[i], t[i + 1]]
results_i = part_i.render_rays(
origin,
direc,
t0=t0,
prev_raw=prev_raw_i,
shared=shared,
render_with_direction=render_with_direction,
)
# Create an importance sampler for (optional) fine rendering
samplers.append(
ImportanceRaySampler(
results_i.volume_range, results_i.raw, **importance_sampling_options
)
)
raw_outputs.append(results_i.raw)
# Pass t[i + 1] as the start of integration for the next interval.
t0 = results_i.volume_range.next_t0()
# Combine the results from [t[0], t[i]] and [t[i], t[i+1]]
results = results_i if results is None else results.combine(results_i)
# While integrating out [t[-1], math.inf] is the correct thing to do, this
# erases a lot of useful information. Also, void_model is meant to predict
# the channels at t=math.inf.
# # Add the void background over [t[-1], math.inf] to complete integration.
# results = results.combine(
# RayVolumeIntegralResults(
# output=AttrDict(
# channels=void_model(origin, direc),
# distances=torch.zeros_like(t0),
# aux_losses=AttrDict(),
# ),
# volume_range=VolumeRange(
# t0=t0,
# t1=torch.full_like(t0, math.inf),
# intersected=torch.full_like(results.volume_range.intersected, True),
# ),
# # Void space extends to infinity. It is assumed that no light
# # passes beyond the void.
# transmittance=torch.zeros_like(results_i.transmittance),
# )
# )
results.output.channels = results.output.channels + results.transmittance * void_model(
Query(origin, direc)
)
return results, samplers, raw_outputs
@dataclass
class RayVolumeIntegralResults:
"""
Stores the relevant state and results of
integrate(
lambda t: density(t) * channels(t) * transmittance(t),
[t0, t1],
)
"""
# Rendered output and auxiliary losses
# output.channels has shape [batch_size, *inner_shape, n_channels]
output: AttrDict
"""
Optional values
"""
# Raw values contain the sampled `ts`, `density`, `channels`, etc.
raw: Optional[AttrDict] = None
# Integration
volume_range: Optional[VolumeRange] = None
# If a ray intersects, the transmittance from t0 to t1 (e.g. the
# probability that the ray passes through this volume).
# has shape [batch_size, *inner_shape, 1]
transmittance: Optional[torch.Tensor] = None
def combine(self, cur: "RayVolumeIntegralResults") -> "RayVolumeIntegralResults":
"""
Combines the integration results of `self` over [t0, t1] and
`cur` over [t1, t2] to produce a new set of results over [t0, t2] by
using a similar equation to (4) in NeRF++:
integrate(
lambda t: density(t) * channels(t) * transmittance(t),
[t0, t2]
)
= integrate(
lambda t: density(t) * channels(t) * transmittance(t),
[t0, t1]
) + transmittance(t1) * integrate(
lambda t: density(t) * channels(t) * transmittance(t),
[t1, t2]
)
"""
assert torch.allclose(self.volume_range.next_t0(), cur.volume_range.t0)
def _combine_fn(
prev_val: Optional[torch.Tensor],
cur_val: Optional[torch.Tensor],
*,
prev_transmittance: torch.Tensor,
):
assert prev_val is not None
if cur_val is None:
# cur_output.aux_losses are empty for the void_model.
return prev_val
return prev_val + prev_transmittance * cur_val
output = self.output.combine(
cur.output, combine_fn=partial(_combine_fn, prev_transmittance=self.transmittance)
)
combined = RayVolumeIntegralResults(
output=output,
volume_range=self.volume_range.extend(cur.volume_range),
transmittance=self.transmittance * cur.transmittance,
)
return combined
@dataclass
class RayVolumeIntegral:
model: NeRFModel
volume: Volume
sampler: "RaySampler"
n_samples: int
def render_rays(
self,
origin: torch.Tensor,
direction: torch.Tensor,
t0: Optional[torch.Tensor] = None,
prev_raw: Optional[AttrDict] = None,
shared: bool = False,
render_with_direction: bool = True,
) -> "RayVolumeIntegralResults":
"""
Perform volumetric rendering over the given volume.
:param position: [batch_size, *shape, 3]
:param direction: [batch_size, *shape, 3]
:param t0: Optional [batch_size, *shape, 1]
:param prev_raw: the raw outputs when using multiple levels with this model.
:param shared: means the same model is used for all RayVolumeIntegral's
:param render_with_direction: use the incoming ray direction when querying the model.
:return: RayVolumeIntegralResults
"""
# 1. Intersect the rays with the current volume and sample ts to
# integrate along.
vrange = self.volume.intersect(origin, direction, t0_lower=t0)
ts = self.sampler.sample(vrange.t0, vrange.t1, self.n_samples)
if prev_raw is not None and not shared:
# Append the previous ts now before fprop because previous
# rendering used a different model and we can't reuse the output.
ts = torch.sort(torch.cat([ts, prev_raw.ts], dim=-2), dim=-2).values
# Shape sanity checks
batch_size, *_shape, _t0_dim = vrange.t0.shape
_, *ts_shape, _ts_dim = ts.shape
# 2. Get the points along the ray and query the model
directions = torch.broadcast_to(direction.unsqueeze(-2), [batch_size, *ts_shape, 3])
positions = origin.unsqueeze(-2) + ts * directions
optional_directions = directions if render_with_direction else None
mids = (ts[..., 1:, :] + ts[..., :-1, :]) / 2
raw = self.model(
Query(
position=positions,
direction=optional_directions,
t_min=torch.cat([vrange.t0[..., None, :], mids], dim=-2),
t_max=torch.cat([mids, vrange.t1[..., None, :]], dim=-2),
)
)
raw.ts = ts
if prev_raw is not None and shared:
# We can append the additional queries to previous raw outputs
# before integration
copy = prev_raw.copy()
result = torch.sort(torch.cat([raw.pop("ts"), copy.pop("ts")], dim=-2), dim=-2)
merge_results = partial(self._merge_results, dim=-2, indices=result.indices)
raw = raw.combine(copy, merge_results)
raw.ts = result.values
# 3. Integrate the raw results
output, transmittance = self.integrate_samples(vrange, raw)
# 4. Clean up results that do not intersect with the volume.
transmittance = torch.where(
vrange.intersected, transmittance, torch.ones_like(transmittance)
)
def _mask_fn(_key: str, tensor: torch.Tensor):
return torch.where(vrange.intersected, tensor, torch.zeros_like(tensor))
def _is_tensor(_key: str, value: Any):
return isinstance(value, torch.Tensor)
output = output.map(map_fn=_mask_fn, should_map=_is_tensor)
return RayVolumeIntegralResults(
output=output,
raw=raw,
volume_range=vrange,
transmittance=transmittance,
)
def integrate_samples(
self,
volume_range: VolumeRange,
raw: AttrDict,
) -> Tuple[AttrDict, torch.Tensor]:
"""
Integrate the raw.channels along with other aux_losses and values to
produce the final output dictionary containing rendered `channels`,
estimated `distances` and `aux_losses`.
:param volume_range: Specifies the integral range [t0, t1]
:param raw: Contains a dict of function evaluations at ts. Should have
density: torch.Tensor [batch_size, *shape, n_samples, 1]
channels: torch.Tensor [batch_size, *shape, n_samples, n_channels]
aux_losses: {key: torch.Tensor [batch_size, *shape, n_samples, 1] for each key}
no_weight_grad_aux_losses: an optional set of losses for which the weights
should be detached before integration.
after the call, integrate_samples populates some intermediate calculations
for later use like
weights: torch.Tensor [batch_size, *shape, n_samples, 1] (density *
transmittance)[i] weight for each rgb output at [..., i, :].
:returns: a tuple of (
a dictionary of rendered outputs and aux_losses,
transmittance of this volume,
)
"""
# 1. Calculate the weights
_, _, dt = volume_range.partition(raw.ts)
ddensity = raw.density * dt
mass = torch.cumsum(ddensity, dim=-2)
transmittance = torch.exp(-mass[..., -1, :])
alphas = 1.0 - torch.exp(-ddensity)
Ts = torch.exp(torch.cat([torch.zeros_like(mass[..., :1, :]), -mass[..., :-1, :]], dim=-2))
# This is the probability of light hitting and reflecting off of
# something at depth [..., i, :].
weights = alphas * Ts
# 2. Integrate all results
def _integrate(key: str, samples: torch.Tensor, weights: torch.Tensor):
if key == "density":
# Omit integrating the density, because we don't need it
return None
return torch.sum(samples * weights, dim=-2)
def _is_tensor(_key: str, value: Any):
return isinstance(value, torch.Tensor)
if raw.no_weight_grad_aux_losses:
extra_aux_losses = raw.no_weight_grad_aux_losses.map(
partial(_integrate, weights=weights.detach()), should_map=_is_tensor
)
else:
extra_aux_losses = {}
output = raw.map(partial(_integrate, weights=weights), should_map=_is_tensor)
if "no_weight_grad_aux_losses" in output:
del output["no_weight_grad_aux_losses"]
output.aux_losses.update(extra_aux_losses)
# Integrating the ts yields the distance away from the origin; rename the variable.
output.distances = output.ts
del output["ts"]
del output["density"]
assert output.distances.shape == (*output.channels.shape[:-1], 1)
assert output.channels.shape[:-1] == raw.channels.shape[:-2]
assert output.channels.shape[-1] == raw.channels.shape[-1]
# 3. Reduce loss
def _reduce_loss(_key: str, loss: torch.Tensor):
return loss.view(loss.shape[0], -1).sum(dim=-1)
# 4. Store other useful calculations
raw.weights = weights
output.aux_losses = output.aux_losses.map(_reduce_loss)
return output, transmittance
def _merge_results(
self, a: Optional[torch.Tensor], b: torch.Tensor, dim: int, indices: torch.Tensor
):
"""
:param a: [..., n_a, ...]. The other dictionary containing the b's may
contain extra tensors from earlier calculations, so a can be None.
:param b: [..., n_b, ...]
:param dim: dimension to merge
:param indices: how the merged results should be sorted at the end
:return: a concatted and sorted tensor of size [..., n_a + n_b, ...]
"""
if a is None:
return None
merged = torch.cat([a, b], dim=dim)
return torch.gather(merged, dim=dim, index=torch.broadcast_to(indices, merged.shape))
class RaySampler(ABC):
@abstractmethod
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
"""
:param t0: start time has shape [batch_size, *shape, 1]
:param t1: finish time has shape [batch_size, *shape, 1]
:param n_samples: number of ts to sample
:return: sampled ts of shape [batch_size, *shape, n_samples, 1]
"""
class StratifiedRaySampler(RaySampler):
"""
Instead of fixed intervals, a sample is drawn uniformly at random from each
interval.
"""
def __init__(self, depth_mode: str = "linear"):
"""
:param depth_mode: linear samples ts linearly in depth. harmonic ensures
closer points are sampled more densely.
"""
self.depth_mode = depth_mode
assert self.depth_mode in ("linear", "geometric", "harmonic")
def sample(
self,
t0: torch.Tensor,
t1: torch.Tensor,
n_samples: int,
epsilon: float = 1e-3,
) -> torch.Tensor:
"""
:param t0: start time has shape [batch_size, *shape, 1]
:param t1: finish time has shape [batch_size, *shape, 1]
:param n_samples: number of ts to sample
:return: sampled ts of shape [batch_size, *shape, n_samples, 1]
"""
ones = [1] * (len(t0.shape) - 1)
ts = torch.linspace(0, 1, n_samples).view(*ones, n_samples).to(t0.dtype).to(t0.device)
if self.depth_mode == "linear":
ts = t0 * (1.0 - ts) + t1 * ts
elif self.depth_mode == "geometric":
ts = (t0.clamp(epsilon).log() * (1.0 - ts) + t1.clamp(epsilon).log() * ts).exp()
elif self.depth_mode == "harmonic":
# The original NeRF recommends this interpolation scheme for
# spherical scenes, but there could be some weird edge cases when
# the observer crosses from the inner to outer volume.
ts = 1.0 / (1.0 / t0.clamp(epsilon) * (1.0 - ts) + 1.0 / t1.clamp(epsilon) * ts)
mids = 0.5 * (ts[..., 1:] + ts[..., :-1])
upper = torch.cat([mids, t1], dim=-1)
lower = torch.cat([t0, mids], dim=-1)
t_rand = torch.rand_like(ts)
ts = lower + (upper - lower) * t_rand
return ts.unsqueeze(-1)
class ImportanceRaySampler(RaySampler):
"""
Given the initial estimate of densities, this samples more from
regions/bins expected to have objects.
"""
def __init__(
self, volume_range: VolumeRange, raw: AttrDict, blur_pool: bool = False, alpha: float = 1e-5
):
"""
:param volume_range: the range in which a ray intersects the given volume.
:param raw: dictionary of raw outputs from the NeRF models of shape
[batch_size, *shape, n_coarse_samples, 1]. Should at least contain
:param ts: earlier samples from the coarse rendering step
:param weights: discretized version of density * transmittance
:param blur_pool: if true, use 2-tap max + 2-tap blur filter from mip-NeRF.
:param alpha: small value to add to weights.
"""
self.volume_range = volume_range
self.ts = raw.ts.clone().detach()
self.weights = raw.weights.clone().detach()
self.blur_pool = blur_pool
self.alpha = alpha
@torch.no_grad()
def sample(self, t0: torch.Tensor, t1: torch.Tensor, n_samples: int) -> torch.Tensor:
"""
:param t0: start time has shape [batch_size, *shape, 1]
:param t1: finish time has shape [batch_size, *shape, 1]
:param n_samples: number of ts to sample
:return: sampled ts of shape [batch_size, *shape, n_samples, 1]
"""
lower, upper, _ = self.volume_range.partition(self.ts)
batch_size, *shape, n_coarse_samples, _ = self.ts.shape
weights = self.weights
if self.blur_pool:
padded = torch.cat([weights[..., :1, :], weights, weights[..., -1:, :]], dim=-2)
maxes = torch.maximum(padded[..., :-1, :], padded[..., 1:, :])
weights = 0.5 * (maxes[..., :-1, :] + maxes[..., 1:, :])
weights = weights + self.alpha
pmf = weights / weights.sum(dim=-2, keepdim=True)
inds = sample_pmf(pmf, n_samples)
assert inds.shape == (batch_size, *shape, n_samples, 1)
assert (inds >= 0).all() and (inds < n_coarse_samples).all()
t_rand = torch.rand(inds.shape, device=inds.device)
lower_ = torch.gather(lower, -2, inds)
upper_ = torch.gather(upper, -2, inds)
ts = lower_ + (upper_ - lower_) * t_rand
ts = torch.sort(ts, dim=-2).values
return ts