Browse Source

gc scripts

main
Cailean 6 months ago
parent
commit
b50847486c
  1. 2
      .gitignore
  2. 172
      shap_e/examples/.ipynb_checkpoints/sample_text_to_3d-checkpoint.ipynb
  3. 96
      shap_e/examples/gc/ShapeGenerator.py
  4. 51
      shap_e/examples/gc/TextGenerator.py
  5. 105
      shap_e/examples/gc/app.py
  6. 97
      shap_e/examples/sample_text_to_3d.ipynb

2
.gitignore

@ -1,3 +1,5 @@
__pycache__/
.DS_Store
*.egg-info/
shap_e/examples/shap_e_model_cache/
shap_e/examples/gc/shap_e_model_cache/

172
shap_e/examples/.ipynb_checkpoints/sample_text_to_3d-checkpoint.ipynb

@ -0,0 +1,172 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "964ccced",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"\n",
"from shap_e.diffusion.sample import sample_latents\n",
"from shap_e.diffusion.gaussian_diffusion import diffusion_from_config\n",
"from shap_e.models.download import load_model, load_config\n",
"from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, gif_widget"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "8eed3a76",
"metadata": {},
"outputs": [],
"source": [
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4127249f-da93-4da9-a15e-47fc1d918758",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"NVIDIA GeForce RTX 3090\n"
]
}
],
"source": [
"print(torch.cuda.get_device_name())"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2d922637",
"metadata": {},
"outputs": [],
"source": [
"xm = load_model('transmitter', device=device)\n",
"model = load_model('text300M', device=device)\n",
"diffusion = diffusion_from_config(load_config('diffusion'))"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "53d329d0",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f76a8f93c93e4b77af91f03645eb5011",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/64 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"batch_size = 1\n",
"guidance_scale = 30.0\n",
"prompt = \"bin bag\"\n",
"\n",
"latents = sample_latents(\n",
" batch_size=batch_size,\n",
" model=model,\n",
" diffusion=diffusion,\n",
" guidance_scale=guidance_scale,\n",
" model_kwargs=dict(texts=[prompt] * batch_size),\n",
" progress=True,\n",
" clip_denoised=True,\n",
" use_fp16=True,\n",
" use_karras=True,\n",
" karras_steps=64,\n",
" sigma_min=1e-3,\n",
" sigma_max=160,\n",
" s_churn=0,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "633da2ec",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c8b8946a49847dd9aa5376f9568775f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HTML(value='<img src=\"…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"render_mode = 'nerf' # you can change this to 'stf'\n",
"size = 64 # this is the size of the renders; higher values take longer to render.\n",
"\n",
"cameras = create_pan_cameras(size, device)\n",
"for i, latent in enumerate(latents):\n",
" images = decode_latent_images(xm, latent, cameras, rendering_mode=render_mode)\n",
" display(gif_widget(images))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "85a4dce4",
"metadata": {},
"outputs": [],
"source": [
"# Example of saving the latents as meshes.\n",
"from shap_e.util.notebooks import decode_latent_mesh\n",
"\n",
"for i, latent in enumerate(latents):\n",
" t = decode_latent_mesh(xm, latent).tri_mesh()\n",
" with open(f'example_mesh_{i}.ply', 'wb') as f:\n",
" t.write_ply(f)\n",
" with open(f'example_mesh_{i}.obj', 'w') as f:\n",
" t.write_obj(f)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

96
shap_e/examples/gc/ShapeGenerator.py

@ -0,0 +1,96 @@
import torch
from shap_e.diffusion.sample import sample_latents
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.models.download import load_model, load_config
from shap_e.util.notebooks import decode_latent_mesh
from tqdm import tqdm
import pygltflib
from pygltflib import GLTF2
import trimesh
import open3d as o3d
import os
import datetime
class ShapeGenerator:
def __init__(self, output_path, batch_size, step_size, guidance):
self.device = None
self.xm = None
self.model = None
self.diffusion = None
self.iterations = 0
self.latents = None
self.output_path = output_path
self.batch_size = batch_size
self.step_size = step_size
self.guidance = guidance
def run(self):
print("Loading Models..")
self.load_models()
print("Finished Loading Models!")
def load_models(self):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.xm = load_model('transmitter', device=self.device)
self.model = load_model('text300M', device=self.device)
self.diffusion = diffusion_from_config(load_config('diffusion'))
def generate_object(self, prompt):
batch_size = 2
# Create random latents
latent_dim = self.model.d_latent
random_latents = torch.randn(batch_size, latent_dim).to(self.model.device)
print(random_latents.shape)
model_kwargs = {}
self.latents = sample_latents(
batch_size=self.batch_size,
model=self.model,
diffusion=self.diffusion,
guidance_scale=self.guidance,
model_kwargs=model_kwargs,
progress=True, # This should already show progress
clip_denoised=True,
use_fp16=True,
use_karras=True,
karras_steps=self.step_size,
sigma_min=1e-3,
sigma_max=160,
s_churn=0,
device = self.model.device,
)
self.export_model(prompt)
def export_model(self, prompt):
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
obj_filepath = f'{prompt}-{self.iterations}.obj'
output_filepath = f'{self.output_path}/{prompt}-{timestamp}.gltf'
print(output_filepath)
for i, latent in enumerate(self.latents):
t = decode_latent_mesh(self.xm, latent).tri_mesh()
with open(obj_filepath, 'w') as f:
t.write_obj(f)
final_mesh = self.construct_mesh(obj_filepath)
o3d.io.write_triangle_mesh(output_filepath, final_mesh)
self.iterations += 1
def construct_mesh(self, obj_fp):
mesh = o3d.io.read_triangle_mesh(obj_fp)
if os.path.exists(obj_fp):
os.remove(obj_fp)
original_triangle_count = len(mesh.triangles)
target_triangle_count = original_triangle_count // 3
decimated_mesh = mesh.simplify_quadric_decimation(
target_number_of_triangles=target_triangle_count)
filtered_mesh = decimated_mesh.filter_smooth_simple(number_of_iterations=5)
filtered_mesh.compute_vertex_normals()
return filtered_mesh

51
shap_e/examples/gc/TextGenerator.py

@ -0,0 +1,51 @@
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, set_seed
import random
import torch
class TextGenerator:
def __init__(self):
self.model = None
self.tokenizer = None
#self.load_models()
def load_models(self):
print('Loading Models...')
self.tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
self.model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
print('Models Loaded!')
def generate_text(self):
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
messages = [
{"role": "system", "content": "You are a helpful AI assistant, that generates two nouns and returns one sentence in the format of: a (noun) with a (noun).\n You can descirbe a random object typically found in a bin"},
{"role": "user", "content": "Can you provide me with a sentence"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 50, # Reduced to focus on concise output
"return_full_text": False,
"temperature": 0.7, # Adjusted for more randomness
"do_sample": True,
"top_k": 100, # Top-k sampling
"top_p": 1, # Nucleus sampling
}
output = pipe(messages, **generation_args)
return output[0]['generated_text']

105
shap_e/examples/gc/app.py

@ -0,0 +1,105 @@
import argparse
import threading
import time
import random
from ShapeGenerator import ShapeGenerator
from TextGenerator import TextGenerator
# command example
# python app.py --output_dir /mnt/c/Users/caile/Desktop/output
class GCApp:
def __init__(self, output_dir, batch_size, step_size, guidance_scale):
self.output_dir = output_dir
self.obj_gen = ShapeGenerator(self.output_dir, batch_size, step_size, guidance_scale)
self.running = False
self.stop_event = threading.Event()
self.thread = None
self.waste_items = [
"Plastic bottle", "Aluminum can", "Glass bottle", "Food wrapper",
"Cardboard box", "Paper bag", "Plastic bag", "Electronics",
"Old smartphone", "Broken TV", "Computer parts", "Batteries",
"Light bulbs", "Old furniture", "Styrofoam cup", "Food container",
"Takeout box", "Cigarette butts", "Plastic utensils", "Straws",
"Bottle caps", "Rubber tires", "Broken toys", "Old clothes",
"Shoes", "Wooden pallets", "Paint cans", "Cleaning products",
"Old appliances", "Wires", "Cables", "Extension cords",
"Old magazines", "Newspapers", "Scrap metal", "Construction debris",
"Yard waste", "Grass clippings", "Leaves", "Old mattresses",
"Carpeting", "Food scraps", "Pet waste", "Diapers",
"Sanitary products", "Receipts", "Plastic wrap", "Packing peanuts",
"Ice cream containers", "Fast food containers", "Takeaway cups",
"Clamshell packaging", "Plastic film", "Broken glass",
"Old books", "VCR tapes", "CDs", "DVDs",
"Game consoles", "Remote controls", "Ink cartridges",
"Toner cartridges", "Old tools", "Gardening tools",
"Bike parts", "Fishing gear", "Beach toys", "Pool floats",
"Old bicycles", "Skateboards", "Surfboards", "Helmets",
"Used batteries", "Old jewelry", "Keyboards", "Mice (computer)",
"Speakers", "Old cameras", "Projectors", "Printers",
"Scanners", "Shredded paper", "Bubble wrap", "Plastic sheeting",
"Tarps", "Old car parts", "Motor oil containers",
"Propane tanks", "Oil filters", "Windshield wipers",
"Car batteries", "Antifreeze containers", "Used tires",
"Old propane tanks", "Scrap wood", "Broken furniture",
"Old carpets", "Leather scraps", "Textile waste",
"Compostable waste"
]
def start_generation(self):
self.running = True
self.stop_event.clear()
self.thread = threading.Thread(target=self._generate_objects)
self.thread.start()
def stop_generation(self):
self.stop_event.set()
self.running = False
if self.thread:
self.thread.join()
def get_random_item_prompt(self):
return random.choice(self.waste_items)
def _generate_objects(self):
while not self.stop_event.is_set():
self.obj_gen.generate_object(self.get_random_item_prompt())
time.sleep(1)
def run(self):
self.obj_gen.run()
while True:
command = input("Enter a command, <start> <stop> <generate (prompt)>: ")
if command.lower() == 'exit':
print("Exiting the program.")
self.stop_generation()
break
elif command.lower() == 'start':
if not self.running:
print("Starting continuous generation.")
self.start_generation()
else:
print("Generation already running.")
elif command.lower() == 'stop':
print("Stopping continuous generation.")
self.stop_generation()
else:
print("Unknown command.")
def main(output_dir, batch_size, step_size, guidance_scale):
app = GCApp(output_dir, batch_size, step_size, guidance_scale)
app.run()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate shapes with the ShapeGenerator.")
parser.add_argument("--output_dir", type=str, required=True, help="The directory to save generated shapes.")
parser.add_argument("--batch_size", type=int, default=2, help="The number of batches for shap-e. the higher the batch size the longer it will take to process but will output a more refined mesh.")
parser.add_argument("--step_size", type=int, default=64, help="The number of steps/iterations for shap-e. the higher the step size the longer it will take to process but will output a more refined mesh.")
parser.add_argument("--guidance_scale", type=int, default=30, help="The guidance scale in context to the text prompt. The higher this value, the model will generate something closer to the text description (CLIP).")
args = parser.parse_args()
main(args.output_dir, args.batch_size, args.step_size, args.guidance_scale)

97
shap_e/examples/sample_text_to_3d.ipynb

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"id": "964ccced",
"metadata": {},
"outputs": [],
@ -17,7 +17,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 2,
"id": "8eed3a76",
"metadata": {},
"outputs": [],
@ -27,7 +27,25 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 3,
"id": "4127249f-da93-4da9-a15e-47fc1d918758",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"NVIDIA GeForce RTX 3090\n"
]
}
],
"source": [
"print(torch.cuda.get_device_name())"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2d922637",
"metadata": {},
"outputs": [],
@ -39,14 +57,29 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"id": "53d329d0",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "299c91406ddc4a368d1c80ed81c20a84",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/64 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"batch_size = 4\n",
"guidance_scale = 15.0\n",
"prompt = \"a shark\"\n",
"batch_size = 1\n",
"guidance_scale = 30.0\n",
"prompt = \"road sign\"\n",
"\n",
"latents = sample_latents(\n",
" batch_size=batch_size,\n",
@ -67,10 +100,25 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 20,
"id": "633da2ec",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7c8b8946a49847dd9aa5376f9568775f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HTML(value='<img src=\"…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"render_mode = 'nerf' # you can change this to 'stf'\n",
"size = 64 # this is the size of the renders; higher values take longer to render.\n",
@ -83,21 +131,40 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"id": "85a4dce4",
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cailean/shap-e/shap_e/models/stf/renderer.py:286: UserWarning: exception rendering with PyTorch3D: No module named 'pytorch3d'\n",
" warnings.warn(f\"exception rendering with PyTorch3D: {exc}\")\n",
"/home/cailean/shap-e/shap_e/models/stf/renderer.py:287: UserWarning: falling back on native PyTorch renderer, which does not support full gradients\n",
" warnings.warn(\n"
]
}
],
"source": [
"# Example of saving the latents as meshes.\n",
"from shap_e.util.notebooks import decode_latent_mesh\n",
"\n",
"for i, latent in enumerate(latents):\n",
" t = decode_latent_mesh(xm, latent).tri_mesh()\n",
" with open(f'example_mesh_{i}.ply', 'wb') as f:\n",
" with open(f'road_example_mesh_{i}.ply', 'wb') as f:\n",
" t.write_ply(f)\n",
" with open(f'example_mesh_{i}.obj', 'w') as f:\n",
" with open(f'road_example_mesh_{i}.obj', 'w') as f:\n",
" t.write_obj(f)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "71b5ace4-b449-4a7e-b4e3-66ee6a5d03c3",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@ -116,7 +183,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.12"
}
},
"nbformat": 4,

Loading…
Cancel
Save